
FINAL REPORT: FY 79 SOFTWARE ACQUISITION
PROCESS MODEL TASK

O BY OSCAR SHAPIRO AND JOHN B. GLORE

JULY 19800

Prepared for

DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts

Project No. 5720
Prepared by

C THE MITRE CORPORATION
C--:1 AW~d fo Pc nBedford, Massachusetts

tJJ iContract No. F19628-80-C-0001

8 O.0

L 8 0 10 A2!7 0;8

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the governent mey have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or othewiN, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any petented

invention that mey in any my be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

PALPII P. DUNLEVY, 2Lt, USAF
Project Manager

FOR THE COMMANDER

CHARLES J. GREWE, Jr., Lt Col, USAF
Director, Computer Systems Engineering
Deputy for Technical Operations

UNCLASSIFIED
SECURIT S*PICATION OF THIS WA&31 (91sn bara Mnted) __________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
)REPRT DCUIENTAION AGEBEFORE COMPLETING FORM

E TR-8129 CtArSSION No. 3. PEC1I IT"S CAT AL.OG NUMBER

Ira

9. PEROR OIN7V RNZON ES AD AESSLP$ JU 7POET TASK
TheV MIRBCrorto

Beod MA 0173 on M_________

PERFCOROLING OGAICEIO NAME AND ADRESS uER

Deputy for Technical Operations LNO I
Electronic Systems Division, AFSC C 127
Hanscom AFB. MA 01731

,d OITORING AGENCY NAME & ADDRESS01 different from Controlling Ollie*) 1S. SECURITY CLASS. (of this report)

16. DISTRIBUTION STATEMENT (of ihie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. abstract entered In Block 20, it different hamn Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reverse side It neceeaery and identlify by block number)

ACQUISITIONKMODELING
SIMULATION
SOFT WARE

VABSTRACT (Continue an revere aide It noeso.my' and identify by block nuntbor)

This final report on the FY 79 Project 5220 Software Acquisition Process Model Task
(522F) presents the approach taken to process model definition, quantification, and
simulation; accomplishments; and status at the fiscal year's end. The report also
identifies desirable improvements and outlines a plan for their incorporation and
application in successive process model versions.,

(over)

W Ij'" 1473 EDITION OF INOV 611IS O'SOLE.It NCLSSIIE
73 UNCLSSIFIE

(j~ 4 jUEue1MlY CLAV. F#CATI.)N OF TNIS PAGE (Sfen bats, Ented)

UNCLASSFIED
SXCUPJYY CLASSIFICATION Of ?NIS VA41U(ft Dm ae

ZABSTRCT (concladed)ereport contains diagram that represent the FullgoSaa in@veloopmsmt phase of fts
Matjor System Acquisition Lies Cycle. tes diagram can provie usaiM refureace
material for anyone who Is (or epect to be) engaged in the planning or monitoring of
a system deveow n I Contract.

Revision 1 elymnates references to several documents not in the public domain.
These changes, made to secure public relhase,, are all minor. In addition, minor
errors have been corrected.

UNCLASSIPE
inUIRIT?, CLASIFI~CATION OP ?"Il PA63fWUS Domn Nw

AC~LDGKENTS

The work described in this report was funded by the Computer Systems
Engineering Directorate (TOI), Electronic Systems Division (ESD), Air Force
Systems Command (AFSC). Major Neil D. McQuage, ESD/TOIT, was Project Officer.
He and other members of the ESD Software Cost Estimation Working Group (ESD
SCEt), especially Captain Joseph A. Duquette, ESD/ACCE, and Hr. A. N. Sukert,
RADC/ISIS, helped to define the scope of the work and provided several useful
suggestions.

Credit for the original idea of a software acquisition process model is
due principally to Hr. Gerard A. Bourdon. Hr. William J. White strongly
influenced the early task definition. H. Donna H. Cosgrove helped to develop
the process model concept further, assessed its feasibility, and did much of
the early FY 79 work. Ms. Marie McLane is responsible for most of the process
model simulation program prepared to date. Ms. Brooke Marshall and Ms. Carol
Sanderson helped to calibrate process model estimates, to review process flow
diagrams, and to proofread other document material. Ms. Lisa A. Popp typed
and helped edit the many drafts.

2..

r

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS 7

LIST OF TABLES 8

INTRODUCTION 9

1.1 POTENTIAL USES 10

1.2 PHASED DEVELOPMENT APPROACH 11

1.3 ORGANIZATION 12

2 SUMMARY 14

3 APPROACH 15

4 PROCESS MODEL DEFINITION 18

4.1 BASIC PREMISES 18

4.1.1 Conformance to Military Standards 18

4.1.2 System, Segment, and CPCI Relationships 18

4.1.3 Validation Phase Activities 19

4.1.4 Support Facilities 19

4.1.5 Phased Implementation Provisions 19

4.1.6 Incidental Activities 20

4.1.7 Resource Utilization 20

4.2 PROCESS FLOW DIAGRAMS 22

4.2.1 Global View 23

4.2.2 Simulation Level Diagrams 23

4.2.2.1 The High-level Simulation
(HiSim) Diagram 24

4.2.2.2 The Low-level Simulation
(LoSim) Diagram 24

3

TABLE OF CONTENTS (Continued)

Section Page

4.2.3 Expanded Views and Amplification Notes 25

4.3 PRIOR PROJECT EXPERIENCE BASE 25

5 PROCESS QUANTIFICATION 32

5.1 SOFTWARE DEFINITION FOR A TYPICAL SYSTEM 32

5.2 PARAMETER SELECTION 33

5.2.1 Activity Box Parameters 33

5.2.2 Decision Box Parameters 34

5.2.3 Special Event Box Parameters 34

5.3 PARAMETER VALUE ESTIMATION 34

5.4 PARAMETER VALUE CALIBRATION 35

5.4.1 Activity Box Timing Calibration 35

5.4.2 Manpower Assignment Calibration 36

5.5 FUTURE ACTIONS 36

5.5.1 Review by a Panel of Experts 37

5.5.2 Training Course Use and Follow-Up 37

5.5.3 Sensitivity Analysis 37

5.5.4 Analysis of Formally Collected Data 38

6 PROCESS SIMULATION 51

6.1 DEVELOPMENT FACILITY AND SIMULATION

PROGRAMMING LANGUAGE SELECTION 51

6.1.1 Facility Selection 51

6.1.2 Simulation Programing Language
Selection 52

6.2 DESIGN OVERVIEW 53

4

TABLE OF CONTENTS (Continued)

Section Page

6.3 DATA BASE 54

6.3.1 List Structure 55

6.3.2 Data Packing 55

6.3.3 Data Base Size 56

6.4 DATA INPUT PROCESSOR 56

6.5 SIMULATION CONDUCT PROCESSOR 56

6.5.1 Event Notice Concept 57

6.5.2 Event Notice Use 57

6.5.3 Simulation Conduct Operation 57

6.5.4 Simulation Results Data Collection 58

6.5.5 Multi-pass Control 59

6.6 OUTPUT REPORT GENERATION 59

6.6.1 Model 0 Output Reports 60

6.6.2 Future Model Output Reports 60

7 ACCOMPLISHMENTS AND STATUS 65

7.1 ACCOMPLISHMENTS 65

7.2 CURRENT STATUS 65

7.2.1 Process Model Definition 66

7.2.2 Process Model Quantification 66

7.2.3 Process Model Simulation 66

8 ANTICIPATED GROWTH AND PLANS 67

8.1 GROWTH AREAS 67

8.1.1 Model Definition 67

5

TABLE OF CONTENTS (Concluded)

Section Page

8.1.2 Quantification 67

8.1.3 Simulation 68

8.1.4 Output Reports 70

8.2 PLANNED FY 80 ACCOMPLISHMENTS 70

8.3 OVERALL PLAN 71

8.3.1 Feasibility Analysis 72

8.3.2 Demonstration Model (MO) 72

8.3.3 Prototype Model (Ml) 73

8.3.4 Initial Operational Model (M2) 74

8.3.5 Assessment of Initial Pilot Applications 74

8.3.6 Routine ESD Model Operation (M2 & M3) 75

8.3.7 Extended Model (M3) 75

8.3.8 Model Review and Evaluation 75

9 CONCLUSIONS AND RECOMMENDATIONS 78

APPENDIX A PROCESS FLOW DIAGRAMS AND AMPLIFICATION NOTES 79

APPENDIX B MODEL DEFINITION DATA 109

APPENDIX C RATIONALE FOR PROCESS MODEL DEVELOPMENT 137

APPENDIX D PARAMETER VALUE CALIBRATION 141

APPENDIX E SIMULATION PROGRAM LISTING EXTRACTS 151

APPENDIX F EVENT NOTICE SPECIFICATION 179

APPENDIX G DEMONSTRATION MODEL (MO) STATISTICS DEVELOPMENT 194

APPENDIX H DATA REPORTING FOR LATER SIMULATOR MODELS 201

GLOSSARY 223

REFERENCES 226

6

LIST OF ILLUSTRATIONS

Figure pg

1 Major System Acquisition Process
Normal Phases of Progression 27

2 Software Acquisition Process Model Activity Flow
Overview - Full-Scale Development Phase 28

3 Software Acquisition Process Flow Diagram - HiSim
Level 29

4 Model Box & Predecessor/Successor Counts 30

5 Phased Group Development Example 31

6 Typical Project - CPCI Breakdown 39

7 Typical Milestone Schedule for Operating Program 40

8 Typical Manpower Utilization Levels 41

9 Typical Manpower Costs for Operating Program CPCI 42

10 Activity Duration Calibration Summary - Main Path
(Calibrated Activity Durations, with Iteration) 43

11 Program Acquisition: Activity Sequence and Timing
Diagram 44

12 Data Base Structure 62

13 Data Base Size 63

14 Event Notice Processing Sequence 64

A-1 Flow Diagram Notation 82

A-2 Software Acquisition Process Flow Diagram -

LoSim Level 84

A-3 Process Flow Expansion 96

D-1 Activity Duration Calibration 142

D-2 Activity Duration Calibration Summary 149

7

LIST OF TABLES

Table Page

I Outline of Strawuan Software Acquisition 76
Process Model Development Plan

2 Tentative Later Process Model Version 77
Characteristics

83

A-I Index to Figure A-2 Connectors & Box Numbers
102

A-2 Process Flow Diagram Amplification Notes

B-I Software Acquisition Process Model 116
Network Linkage

B-2 Software Acquisition Process Model 128
Activity Box Parameter Data

B-3 Software Acquisition Process Model 134
Decision Box Parameter Data

B-4 Software Acquisition Process Model 136
Counter & Special Event Box Parameter Data

8

SECTION 1

INTRODUCTION

This report documents the results achieved during FY 79 on Project 5220,
task 522F, Software Acquisition Process Model. Since this is the final FY 79
report on this project, it includes previously reported findings to the extent
necessary to make this report self-contained.

The concept of an ESD Software Acquisition Process Model grew out of
earlier work in software cost estimation. Most of this prior work was based
on an algorithmic or analytic approach by which computer program attributes
(such as size, function, application, and complexity) along with developmental
attributes (such as language, tools, methods, and experience) could be
converted into cost estimates. As reported in a MITRE review of software cost
estimation methods (CLAPJ76) the results of using these estimation methods on
large military systems have been less than adequate.

More recently, a concept evolved which suggested that the software
development process itself (rather than just overall attributes of the
software and development methods) should be used as a basis for software
estimating. While this approach might add some complexity to the estimating
process, it appeared to have compensating advantages. As the idea was
evaluated, it became clear that on military systems involving embedded
software, the development process was too closely joined to acquisition
procedures for the two to be separated. For this reason, we decided that the
overall acquisition process (including both contractor and government
activities) was a better basis for software estimation than development alone.
A succinct statement of this idea and its rationale was provided in a July
1978 MITRE letter to ESD; the relevent portion of this is reproduced in
Appendix C, Rationale for Process Model Development. This approach was later
recommended within the Research Management Plan developed by the Air Force
Systems Command Software Cost Estimating Working Group (SCEWG79). As stated
in the letter, the MITRE evaluation

"strongly indicates substantial potential benefits from
developing and applying in selected ESD-managed acquisition
programs a simulation model of the software acquisition process.
The type of software acquisition process model considered would
represent explicitly (e.g., in flowchart form) the different
Program Office (PO) and contractor activities that ESD-managed
software acquisition entails, and how these different activities
interact. It would represent activity sequences, repetitions of
such sequences, alternatives, concurrency, and delays (e.g., due
to waits for essential inputs). In this respect the model would
somewhat resemble PERT, but without PERT's restrictions on loop
representation, etc."

The concept involved early Model development and application to ESD-
managed Electronic system programs, conducted per AFR 800-series regulations,

9

that include acquisition of embedded software. The clear need for improved
ability to estimate better such systems' costs and schedules, and to manage
better their development, guided the choice of this general application area.
Later, the Model could be revised or extended for application to other AFSC
Product Division programs, and to other types of systems. Another reason for
the early emphasis was availability at MITRE of persons with extensive
practical experience on such programs, able to develop the Model.

1.I POTENTIAL USES

A number of advantages were seen for the Simulation Model. These
include:

a. Improved accuracy. This would result, in part, from the explicit
contractual situation on which the Model would base its estimates.

b. Measures of uncertainty, because the Simulation Model could produce a
measure of estimates' dispersion, and'corxesponding estimate ranges, as well
as point values.

c. More credibility, because the estimates would be based on defined
activities to which an acquisition program's management could relate and which
they could understand.

d. More flexibility, because the modeled process could include the
effects of changes in development technique which will occur as the practice
of software engineering matures.

e. More versatility, because the Simulation Model could support many
other uses (described below) than the generation of cost and time estimates.
In fact, the concept and simulation program (i.e., the Simulator) could be
applied to equipment procurement, total system acquisition, acquisitions
conducted per different regulations, and many other processes.

While the main driving force behind the Simulation Model is the need for
better software-related cost and schedule estimates, the Model could be
effectively employed for other purposes, such as the following:

a. The diagrams of the acquisition process would be useful for training
military and support personnel for work on software acquisition. The
simulation program (i.e., the Simulator) itself would also help the training,
by presenting a dynamic picture which would illustrate the effects and
consequences of alternative actions and decisions.

b. The diagrams would be very helpful in project planning. They would
provide a checklist that insured that important activities and products were
not overlooked, and that contractual events and products were scheduled
realistically; i.e., in conformance with the organic needs of the acquisition
process. Past experience on many projects indicates that this need has often
been overlooked, with dire consequences. The Simulator would also improve the

10

validity of the system planning trade-off analyses that are performed to
establish the capability and capacity mix for a particular procurement.

c. The Simulator could be useful for evaluating contractor proposals to
determine the extent to which the proposed schedule, allocated costs,
development plans, etc. were consistent with Simulator forecasts, and thus
with previous ESD experience.

d. During contract monitoring, the Simulator would help evaluate the
consequences of milestone slippage, delays induced by Engineering Change
Proposals (ECPs), ongoing cost reports vs. developmental progress, etc.

e. After the Model was put into routine use on ongoing contracts, and as
the data associated with real contracts accumulated, the Model accuracy would
improve as its processes and parameter values more closely reflected those
found on real projects. As this happened the Model would evolve in concert
with the improvements in the software development art. The resultant
parameter changes would then provide an objective measure of the "trend line"
and would enable more accurate future forecasts. At the same time, the data
obtained on ongoing projects would enable the developmental performance on
different contracts to be objectively and numerically compared.

f. The graphic description of the acquisition process provided by the
Model would present a compact yet detailed view of how the Air Force obtains
embedded software. This view could improve understanding of the process, and
thus help to determine ways by which it could be improved. The objectives
sought, for example, could be ways to reduce the overall time or costs, to
obtain a more reliable product, or to establish the cumulative impact of the
various system constituents (including operating functions, support functions,
and data items) for use in tradeoff studies that would also consider each
constituent's utility value. Use of the Simulator would allow the dynamics of
the process to be assessed and would make it practical to obtain quantitative
answers to complex questions for both general acquisition policy and specific
procurements.

g. Finally, the Model could be used as a research tool for investigating
developmental alternatives and managerial strategies. It could forecast, for
example, the impact of different manning assignments, more or fewer
development support facilities, longer or shorter schedules, etc.

1.2 PHASED DEVELOPMENT APPROACH

An early objective of the work on this project was to establish a balance
between the scope of the work and the resources that could be made available
for its accomplishment. The potential width of the Model was seen as the
entire Major System acquisition process from the Conceptual Phase through the
Deployment Phase. The potential depth of the work was limited only by what
could practically be described, estimated, and ultimately simulated.

The achievement of the Model's full potential was taken as the objective
of a multi-year effort. Scope limitations were necessary, therefore, to bound

11

the iuitial phase of the work. Some balance between width and depth needed to
be struck.

While it is a functional necessity for definition to precede
implementation, it is a practical necessity that the consequences associated
with various implementation techniques be allowed to influence the style and
content of the definition work. In order to achieve adequate depth, it became
necessary to restrict the width. Since the width potentially includes all
five Acquisition Life Cycle phases, the selection of at least one of these
phases for the initial work was indicated. After some evaluation, the Full-
Scale Development (FSD) Phase emerged as a logical choice for the following
reasons:

a. Full-Scale Development on a system does not ordinarily begin until
requirements have been established and an implementation concept has been
selected and validated. This prior work provides much of the basis for sizing
the software, and is accordingly an essential prerequisite to accurate
costing. Thus, more accurate estimates could be made at the start of the FSD
Phase than for earlier phases of the Acquisition Life Cycle.

b. The decision to embark on Full-Scale Development involves a high cost
commitment in which software cost and timeliness are important considerations.
Therefore, since the need for better estimates is most acute at this point, a
FSD model seems most likely to find an early pilot application on an ESD
project.

c. Since FSD is the life cycle period during which the expenditure rate
is highest, a FSD model should achieve the highest payoff to ESD.

d. Finally, since the staff assigned to this project were most
experienced with the FSD phase, they were better able to efficiently model
that phase than any other during the critical Model formulation period.

It was also necessary to limit the depth of the project during FY 79.
This was done by establishing an evolutionary development approach in which
the first step would be basic core capability. This does not mean a
simplistic "show something" product; it means, instead, one that provides for
meaningful operation at a basic level, and is designed to accommodate the
anticipated future growth.

To guide this growth, several successive versions of the Model were
defined, and a plan for their phased development, pilot testing, and
operational use was outlined. To help implement this plan, we were fortunate
to devise a very powerful and flexible Simulator design concept, which will
assure a relatively small computer program, easy to maintain and modify.

1.3 ORGANIZATION

This report has been organized into a report body that is supported by a
number of appendices. The appendices generally serve to retain the
documentation developed during the ongoing definition and design activities.

12

Alm"

They incorporate the main technical substance of the work performed to date.
While these appendices are too detailed for inclusion in the report body, they
do provide important reference and backup materials that have not been
distributed previously. For example, Appendix A, Process Flow Diagrams and
Amplification Notes, especially Figure A-2, Software Acquisition Process Flow
Diagram - LoSim Level, depicts the entire FSD Process, at the level planned
for initial simulation. This figure may be inspected to obtain considerable
insight into this Acquisition Life Cycle phase. While most readers are
probably familiar with (or have participated in) the FSD process, the diagram
can impart an integrated view of the whole procedure. The overall complexity
and degree of interaction of the process are not so apparent when it is
experienced during the two or three years during which it normally unfolds.

Similarly, Appendix B, Model Definition Data, contains estimates of the
manpower and elapsed times necessary to complete each of the activities
depicted in Figure A-2, and the probabilities of the decisions shown there.
Appendix B may also be of interest because it represents the Figure A-2 flow
diagram network in tabular form for use by the Simulator.

The appendices further show much of the progress achieved during the year
and the degree to which the design has matured.

The report body summarizes and ties together the technical information

contained in the appendices. For those persons whose interest in this work is
casual, a summary is provided in Section 2. Section 3 describes the overall
development approach. Sections 4, 5, and 6 describe, respectively, the
techniques used to define, quantify, and simulate the process. Section 7
summarizes the accomplishments during FY 79, and the status of the project at
the end of that fiscal year. Section 8 describes the areas of anticipated
growth, and a plan for its achievement. Conclusions and recommendations are
provided in Section 9.

The report contains numerous figures and tables. Each of these is
located at the end of the section to which it is most pertinent. References
to figures and tables in the body of the report which are not part of a
section include page numbers to facilitate access. The List of Illustrations
can be used to locate all figures and the List of Tables all tables.

13

SECTION 2

SUMMARY

Virtually all major military systems now include computers and associated
software as essential elements for providing system functions. As these
systems have evolved, the computer programs (termed embedded software) have
grown in capability and size. They have also contributed greatly to system
development costs and, all too often, to cost overruns and slipped schedules.

For these reasons, project planners need a method of obtaining reliable
estimates for the cost and time of acquiring embedded software. While many
methods are in current use, none have produced results with sufficient
accuracy and reliability to meet needs.

Recently, a concept evolved which suggested that more accurate estimates
could be obtained by using a simulator to model the process by which software
is developed and acquired. By decomposing the overall process into unit
functions which could be grasped and evaluated, and by allowing development
decisions (and resulting rework) to be explicitly included, more accurate
results, plus expected variations, would be obtained.

A project based on this concept was funded. The results of the FY 79
work are described in this report. The software-related work in the Full-
Scale Development Phase of the Major System acquisition process has been
carefully defined by means of several levels of process flow diagrams plus
supplemental information. The process has been quantified to express the cost
and time contributions of each unit process as well as the probability value
associated with each decision element. A simulation concept was developed by
which the whole acquisition process could be converted into tabular form and
then used to drive a rather small computer program that conducts the
simulation and collects the results. The actual Simulator design is well
along, and some of it has been coded and compiled.

Considerable progress was made on a first model of the Simulator
(Model 0). Future plans call for a series of suLcessive models, each of which
captures more of the inherent subtlety of the acquisition process. Also the
later models will become more generic and therefore more readily adapted to a
wide range of projects. Plans also include an increase in breadth of the
Model so that all phases of the Major System acquisition process, from the
Conceptual to the Deployment Phases, are included.

During FY 79, much has been accomplished and much learned. Based on that
experience the Process Model looks entirely feasible and the original promise
remains bright. Moreover, a number of other likely uses for the Simulator
have been noted; its growth into a general management tool for wide use in
acquiring embedded software appears promising.

Due to the results accomplished, and the potential value of a Software
Acquisition Process Model Simulator, MITRE recommends continuing the project.

14

SECTION 3

APPROACH

The overall technical effort on the project is being channeled into three
principal areas. These work areas, which are briefly introduced below, are
detailed in Sections 4 through 6, respectively.

a. Process Definition. This work involves the creation of Process Flow
Diagrams and Explanatory Notes which represent the process whereby computer
software is acquired by ESD under the AFR 800-series regulations. In
particular, the project is focused on software which is embedded within a
large command, control, and communications system (see DoDD 5000.29). For
maximum realism these Process Flow Diagrams represent both sequential and
concurrent activities. Otherwise, to facilitate comuunication, they are
conventional Von Neumann flowcharts.

b. Process Quantification. This work involves establishing parameters
which describe each element within the Model, and obtaining appropriate
initial values for these parameters.

c. Process Simulation. This task requires that the Model be mechanized
so that it can be used to carry on synthetically the processes aefined, using
the assigned parameters. It can thereby forecast and report the statistical
consequences in terms of probable schedule and cost distributions. A discrete
event simulation program (i.e., the Simulator) is the mechanism of choice.

The Process Definition and Process Quantification work is based
principally on the authors' personal acquisition program experience. This has
been supplemented by review of pertinent regulations, specifications,
standards, and data item descriptions (DIDs) performed to prepare a series of
software acquisition management guidebooks.

The three work areas needed to be started in the order presented.
However, because of the interdependence among them, the work was programmed to
allow for the changes induced in each task by the "ripples" created by the
others. For this reason, Process Definition was stressed at first until there
was a basis for beginning the work in the other areas. Later, work proceeded
simultaneously and interactively in all three areas, but with emphasis
gradually shifting to simulation program design.

Another consideration in this conceptual development concerned the level
of detail to be included in the Model and the extent to which the various
Model processes would interact. After some exploratory investigation, an
evolutionary approach was selected in which a relatively simple version of the
Model would be defined and implemented first; this would be followed in turn
by a sequence of increasingly realistic versions. This evolutionary approach
led to a consideration of Model attributes, their utility, and the amount of
effort needed for their definition and simulation. There was early
recognition that an overall lifelike simulation of the process would be

15

complex and would need to include many subtle interactions. At the same time,
it appeared that simpler versions could be useful, if built for limited
applications. As a result, an initial version of the Simulator (i.e.,
Model 0) was defined and capabilities were established for several successive
versions. In addition, other Model attributes were identified which could be
added later, in response to the needs and priorities of the Model users.

Despite the desire for simplicity, the initial Model includes capability
for dealing with basic design and acquisition concepts which are only
indirectly treated (if at all) by other tools. One of these concepts is
phased implementation (see Section 4.1.5). By using this concept the system
software developer does not need to confront, design, and implement the
required capability in its defined totality. Instead, he establishes a set of
versions which are to be developed sequentially until the first deliverable
version is completed. This concept was used with considerable success on a
recent ESD project called SALTY NET, and is expected to receive widespread
application in the future, particularly on major weapon system acquisition
projects. This concept is also being used informally on this small-scale
project.

Interaction and iteration are also explicitly represented in this Model.
While these have always plagued the ongoingrfdevelopment process, other
planning and estimation methods generally treat them indirectly (e.g., via
loading factors) or ignore them. Since we believe that these factors are
often largely responsible for the wide disparity between the project plan and
its realization, the Model includes paths for both forward and iterative
progression.

In addition, the Model includes decision elements which select among
exclusive alternative paths. The Model also includes a mechanism for allowing
the results of earlier processes to influence the consequent results of later
ones. While this mechanism (i.e., the Special Event) will receive limited use
in the earlier Simulator versions, it provides a basis for emulating much of
the subtlety of the acquisition process. Later versions are expected to make
extensive use of this capability.

Note that the provisions for phased implementation, interaction, decision
elements, and iteration have been costly in terms of definition and design
effort. They have been included, nevertheless, to avoid a design which could
not accommodate the maturing needs of the Model users.

In order for a simulator to work, it is necessary that quantifying
parameters be selected and specific parameter values be applied to the
individual function boxes which populate the Model. Eventually, this will
need to be accomplished by the development of valid relationships between the
time expended in each function box and such factors as:

a. the quantity and quality of manpower and other resources available;

b. the extent and difficulty of the task represented by the box; and

16

c. the size and complexity of the total project and of the computer
program component or module being addressed by the box.

The development of these time and cost relationships and their validation
require the expenditure of much effort and time - much more than have been
available on this project. Since little prior work has been published (other
than gross estimates such as those which ascribe cost distribution, like 40%
design, 20% coding, and 40% test), this type of work would need to start from
basics.

For these reasons, a more limited approach was taken for obtaining
parameter values. In this approach, a set of parameter values (per function
box) were developed for a typical project. These values were originally
obtained from estimates made by persons familiar with the individual processes
being modeled. The estimates were then calibrated by comparing the project
schedule derived from these estimates with a typical schedule for such a
project, as obtained from military procurement experience. The original
parameter estimates for each segment of the schedule were then scaled to make
the derived schedule coincide with the one estimated.

17

SECTION 4

PROCESS MODEL DEFINITION

In this section information is presented which describes our modeling of
the software-related aspects of the Full-Scale Development Phase of the Major
System acquisition process. Paragraph 4.1 describes the basic premises
followed as the Process Model was being defined; Paragraph 4.2 introduces the
set of diagrams by which the Model of the process was described. Paragraph
4.3 describes some prior projects wherein the authors gained relevant
experience.

4.1 BASIC PREMISES

During preparation of the Software Acquisition Process Model, it was
found necessary to delineate the Model and to limit the scope of the effort to
fit within a limited budget and schedule. The set of basic premises discussed
below was established, therefore, as guidance for the initial phases of this
work. Some of these apply to the acquisition process itself, others to
simplifications introduced for application to early versions of the Simulator.
These premises, whenever applicable, are referenced by Table A-2, Process Flow
Diagram Amplification Notes, which supports the Process Flow Dicgrams.

4.1.1 Conformance to Military Standards

The acquisition process modeled will conform to all military standards
and regulations that are normally applied to software acquired during
Electronic System procurements. These include MIL-STD-483, Configuration
Management Practices for Equipment, Munitions, and Computer Programs;
MIL-STD-1521A, Technical Reviews and Audits for Systems, Equipment, and
Computer Programs; AFR 800-2, Acquisition Program Management; and AFR 800-14,
Vol. II, Acquisition and Support Procedures for Computer Resources in Systems.
If deviation from these practices is found to be necessary, it will be
explicitly described (and explained) at each point in the process where it
occurs; a summary list of all such deviations, if any, will be provided.

4.1.2 System, Segment, and CPCI Relationships

The relationships among activities associated principally with a system,
its segments, and its Computer Program Configuration Items (CPCIs) will be
considerably simplified in the early implementations. In particular, system
segments can be used in different ways on different contracts and are
therefore not fully amenable to generic implementation. For this reason, the
Model addresses the CPCI (level 3) and one level higher. While this higher
level is referred to as "system" (level 1) it could as readily represent
"system segment" (level 2). The choice is dependent on the nature of the
system and the specific contract(s) being simulated.

18

L-

In addition, while the Model is designed to accommodate a number of
CPCIs, it will treat these initially in a somewhat simplified manner. As thus
modeled, all CPCIs will initiate and terminate together (e.g., in the System
Test), and proceed independently in between. In actual practice, the various
CPCIs often have dependency relationships which can be of critical importance
to the success of a project (see Figure 6, notes B-D, page 39). Later
versions of the Model will be designed to accommodate these relationships.

4.1.3 Validation Phase Activities

The Process Model of the Full-Scale Development Phase presumes that a
full Validation Phase has already been completed. However, since many
projects omit this phase but incorporate some of its activities in the Full-
Scale Development Phase, provision should be made for such activities'
incorporation (e.g., the preparation of development specifications) in the FSD
Phase Model. Extension of the Model to the Validation Phase is planned for
later implementation. The process flow developed for that phase will be
designed so that selected activities can be readily moved into the Full-Scale
Development Phase.

4.1.4 Support Facilities

The Model will presume that the Test and Programming Support functions
will each be provided by separate facilities. On some projects, such
facilities may be shared (in whole or in part) to support both functions. The
Model will be designed to reflect any combined use of these facilities.

While the current Model provides for accumulating the costs of operating
and maintaining support facilities and for the impact resulting from their
late availability, it does not include the effect of contention between
facility users or the results of unscheduled down time. These latter
capabilities will be added in later versions.

4.1.5 Phased Implementation Provisions

Procurement regulations allow design reviews to be conducted on a single
or on an incremental basis. The Model is being designed to represent the
incremental approach. While this decision adds to the complexity of the
Model, it was taken because the single design review approach would not
support the trend toward phased development, particularly for larger systems.
The Model will also accommodate the single design review approach, simply by
setting the number of design increments to one.

The initial Model is being designed to accommodate the following
incremental approach:

a. Each CPCI is defined by a specification which states the functional
requirements to be met at the completion of the current procurement contract.
While certain follow-on requirements may also be explicitly or implicitly
defined, these are treated as beyond the scope of that contract.

19

b. The contractor would divide the total contractual requirements into
several increments (hereafter called Developmental Integration Groups (DIGs)).
This division would be defined in a phased implementation plan that is
included within the Computer Program Development Plan (CPDP).

c. As shown in Figure 5, Phased Group Development Example, the
contractor would then proceed with the design of the first DIG (DIG-I). The
work on this DIG would then pass successively through the various stages of
the design process (including Preliminary Design Review (PDR) and Critical
Design Review (CDR)), and through coding, debugging, integration, and
contractor internal testing. The work might also be subject to Preliminary
Qualification Testing (PQT), but not to Formal Qualification Testing (FQT).

d. The design and implementation of the other DIGs would proceed in
order behind DIG-I. Work on the second DIG (DIG-II) would begin after PDR on
DIG-I; DIG-III would start after PDR on DIG-II, etc. Similarly, the CDRs and
other development activities would proceed in the same order.

e. During each stage of development, each successive DIG would add to
and build onto the aggregated preceding DIGs. In other words, a single CPCI
would be built in successive stages; it would not be built as separate DIGs to
be joined together at the end.

f. When the last DIG passed through each development stage, the total
implementation to that stage would be complete. Therefore, each last DIG
design review would be extended to survey the totality of the design, in
addition to that of the last functional increment.

g. The Model documentation includes notation to accommodate the
incremental development concept. The notation will indicate (with a "D"; see
Figure A-i) those processes which are presumed developed in this phased
manner. In addition, when a development phase is complete for one DIG, the
process must return to that phase to begin work on the next DIG. This type of
return is shown as type "D" on the Process Flow Diagram (Figure A-2) and in
the Network Definition Table (Table B-i) (in its General Data Grp column).

h. The formal test activities may also be conducted on a similarly
phased basis. The Model will support this approach by allowing Test
Integration Groups (TIGs) to be sequentially processed in a manner analogous
to the handling of DIGs. Note that the TIG division involves the test related
activities and applies to a totally implemented CPCI; therefore, TIGs are not
related to DIGs in terms of usage or quantities.

4.1.6 Incidental Activities

While the Model is planned to include all significant mainstream
acquisition activities, it will not include a number of incidental tasks that
are essential to a project but that would add needless complexity to the
Model. Instead, the cost and loading impact of such activities will be
included as general overhead factors. Similarly, certain events and
activities judged too infrequent or too inconsequential to the Model (though
not to the acquisition process) will not be included. Should experience or

20

collected data indicate that some of these incidental activities be added to

the Model, this can be done in a later version.

4.1.7 Resource Utilization

Each process activity consumes project resources such as:

a. contractor manpower in various job categories;

b. government manpower in various job categories;

c. development support facilities;

d. test support facilities;

e. miscellaneous other resources.

In the early implementations, only manpower resources are being assigned
to specific process activities. There are two reasons for this. First,
manpower is by far the most important resource in software acquisition.
Second, because of this, we deemed it more important to develop reasonably
sound initial manpower estimates than to divert effort toward estimating other
resource requirements. The manpower categories listed below were selected for
implementation based on our acquisition program experience. In addition, the
manpower accounting techniques and the effects of resource limiLation are
described below.

a. Contractor personnel. Five job categories were selected for
individual assignment to each activity:

(1) systems engineer or analyst;

(2) designer;

(3) programmer;

(4) test engineer;

(5) support (e.g., equipment operator, librarian, documenter).

During our initial Process Model work, Management was included as an
additional category. This separate Management category was abandoned when the
need to subdivide a manager's time among many ongoing tasks made its
estimation impracticable. Aside from the difficulty in estimation, results
would be inaccurate because management styles differ widely and would
generally be unknown. For this reason, we decided to represent management as
a continuous activity with an overall manpower profile that conforms to the
estimated (or given) needs for the project being modeled.

b. Government personnel. Three job classifications were selected for
personnel assignment to specific activities; these reflect the three principal
commands involved in system acquisition: The Developing Command (e.g.,

21

Electronic Systems Division (ESD)), the Using Command (e.g., Tactical Air
Command (TAC)), and the Supporting Command (e.g., Air Force Logistics Command
(AFLC)). Consideration was given to further specifying the assignments (e.g.,
to Engineering, Test, Configuration Management, etc.) but it was decided that
this would be more appropriate in later versions.

c. Initial implementation technique. Recognizing that personnel
categories are likely to differ for different contractors and projects, a
generic assignment technique was dictated. The method selected can be used
for any number of categories. While a one-dimensional list of manpower
categories is being implemented, it can be expanded to two (or more)
dimensions if needed. This would allow, for example, the group of ESD
personnel assigned to an acquisition program to be further divided into
functional groups, such as Engineering or Test. It would also allow
contractor designers, for example, to be further distinguished as senior or
junior, etc. Working versions of the Simulator will eventually use job
categories that are compatible with those developed for the planned ESD
Software Acquisition Resource Expenditure (SARE) reporting system.

d. Resource limitations. The rate of progress on any project can be
strongly influenced by the quantity and quality of the available resources.
The Simulator, in Model 1 and later, will allow the amount of resources to be
defined such that each activity can draw from a resource bank when it is ready
to begin. When the demand for a resource exceeds its supply, the process will
slow accordingly. This process behavior, while inherently simple, may require
that different and perhaps complex management strategies be devised to resolve
automatically the problem of allocating scarce resources among competing
activities. For this reason, the initial Simulator version will not reflect
the effects of resource limitation. Instead, it will allocate manpower only
on the basis of the needs of each activity, and keep track of the amount used.
The end result of a simulation run will include a statistical profile of the
total amount of manpower used in each category versus time.

4.2 PROCESS FLOW DIAGRAMS

Process Flow Diagrams have been used as the principal means for
describing the process of acquiring embedded software. They were developed at
several levels of detail, as follows:

a. a global view of the whole process;

b. a high simulation level (HiSim);

c. a low simulation level (LoSim); and

d. expanded views of LoSim boxes to show more elemental relationships as
needed.

The conventions followed by these Process Flow Diagrams are described in
Appendix A, Figure A-i, Flow Diagram Notation. Briefly, they define three
types of basic element: (1) function boxes; (2) auxiliary elements (e.g.,

22

connectors); and (3) lines of flow. These conventions should be understood
before the Process Flow Diagrams are reviewed.

The LoSim and Process Flow Expansion Diagrams (Figures A-2 and A-3,
respectively) distinguish support activities from mainstream activities by
representing the former in trapezoidal boxes while limiting the use of
rectangular boxes to the latter. This distinction is not made in the HiSim
and higher-level Process Flow Diagrams (Figures 1-3). There, rectangular
boxes represent all activities.

4.2.1 Global View

The sequential relationship among the phases that constitute the standard
Major System acquisition process (defined in AFR 800-2, Acquisition Program
Management) is shown in Figure 1, Major System Acquisition Process Normal
Phases of Progression. The Full-Scale Development Phase is emphasized in this
figure to indicate that it is the focus of the initial work being accomplished
on this project. The principal groups of Full-Scale Development Phase
activities and the most important lines of flow among them are shown in
Figure 2, Software Acquisition Process Model Activity Flow Overview - Full-
Scale Development Phase. Besides providing a global view, this figure aids
access to two more detailed diagrams, termed simulation level diagrams, that
the Simulator can mechanize:

a. The box numbers in Figure 2 refer to those used in Figure 3, Software
Acquisition Process Flow Diagram - HiSim Level. Two of the Figure 2 box
numbers (i.e., 66 and 96), which pertain to the Program Management Review
(PMR) and ECP processes, respectively, are not shown in Figure 3. Inclusion
of these processes was deemed inappropriate because both can interact with
most of the other ongoing activities in a way which cannot be properly
represented at the HiSim level.

b. The sheet number references given in each Figure 2 process flow
activity group box refer to Figure A-2, Software Acquisition Process Flow
Diagram - LoSim Level. The box numbers in Figure 2 also refer to the digit
portion of the alphanumeric box identifiers shown in Figure A-2.

4.2.2 Simulation Level Diagrams

Two simulation levels are planned to support different purposes to which
the Simulator may be put. The two levels may be either used separately or
intermixed. This will let detailed simulation results be obtained in selected
areas while the remaining portions of the process are treated more generally.
Also, the whole process or just a portion of it may be simulated.

Note that transition from low to high level modeling involves both
coalescence of many boxes into a few and abridgement of the lines of flow
(i.e., network linkage). While box coalescence is readily accomplished, the
need to retain network continuity will require that mixed-mode simulation
level transitions take place only at points where the lines of flow are
compatible.

23

4.2.2.1 The High-level Simulation (HiSim) Diagram

The HiSim diagram (Figure 3) views the Full-Scale Development Phase as a
serial and parallel sequence of 32 composite activities. This diagram also
shows the main lines of process flow that connect these activities. A
simplified notation has been used to label those connectors that reflect
dependencies between activities that fall in different main lines of flow.
Thus, all connectors that lead to documentation activities have labels that
begin with a "D". Similarly, test-related connector labels begin with "T".
The beginning and ending Terminals are labeled "B" any "Y", respectively, in
agreement with the notation used on all the other process flow diagrams.

While Figure 3 provides a modestly detailed overview of the FSD process,

it is important to recognize that the following are not represented:

a. decisions (i.e., exclusive alternatives);

b. task iteration;

c. Integration Group (i.e., DIG and TIG) progression;

d. most distinctions between contractor and government
activities.

Because of these omissions, pure HiSim simulation appears to have
marginal value except for general project planning and estimation before
further detail becomes available. If thus used, the HiSim parameter values
should, to be realistic, represent the results of simulation at a lower level.

The HiSim Process Flow Diagram looks more promising as the initial basis
for a mixed-mode simulation; (i.e., one that includes more detail
selectively). This detail would come from the LoSim Process Flow Diagram
(discussed next) or modifications thereof.

4.2.2.2 The Low-level Simulation (LoSim) Diagram

The LoSim Process Flow Diagram (Figure A-2) uses approximately two
hundred boxes on twelve pages to represent the overall process. The function
of each box is described in abbreviated English, but box size limitations make
it desirable to code some of the information via box shapes as well as in
special fields. The key to connector and box number locations in Table A-i
will aid in following the flow and in finding boxes referenced in the tables
of Appendix B.

The initial Simulator (Model 0) is planned to operate at the LoSim level,
but will not include Engineering Change Proposal (ECP) processing, shown on
Sheet 12 of Figure A-2. The diagram at this level is more systematic and
somewhat less detailed than that shown as mid-level in our April 1979 interim
report. While the LoSim level appears about right to represent lifelike
process behavior, level adjustments, up or down, can be expected as the
Simulator matures and begins to support the needs of its users. As shown in
Figure 4, Model Box & Predecessor/Successor Counts, a total of 187 boxes are

24

used in this representation (not including the ECP Process); the figure also
provides a numeric breakdown of box types, Integration Group assignments, etc.

Note that the complexity of the Model, in terms of the number of boxes
and the number of interconnections, is not critical at this time. The
Simulator design, described in Section 6, can readily support any reasonable
degree of complexity. Higher complexity will add to the time and cost of
simulation, and to the effort needed to establish the parameter values by
which each process is quantified; it will not change the Simulator program,
however, which is table-driven.

4.2.3 Expanded Views and Amplification Notes

The LoSim level attempts to show valid lifelike behavior of the
acquisition process while maintaining a manageable level of complexity. At
its level, however, some of the activities portrayed may not be clearly enough
described or differentiated. For this reason, additional explanatory material
is provided in Appendix A. The Process Flow Expansion diagrams (Figure A-3)
further subdivide selected LoSim box activities. The Process Flow Expansion
diagrams depict more elemental and thus more easily understood activities;
they also clarify the box-to-box flow. This material also provides a better
functional basis for establishing parameter values to be applied to the parent
LoSim boxes.

Note that any Process Flow Expansion can replace the equivalent LoSim
box(es) in the Simulator input if the user wishes to explore certain aspects
of process behavior at a lower level.

Appendix A also includes Amplification Notes that clarify certain
activities or that provide relevant background material. These cover only a
fraction of the total Model; their completion has been deferred to FY 80.

4.3 PRIOR PROJECT EXPERIENCE BASE

The definition of the Software Acquisition Process as described herein is
based mainly on experience obtained by the authors through work on prior
software-related projects; the principal ones are listed below.

a. Project 407L, Tactical Air Control System (TACS).

b. Project 485L, Tactical Air Control System Improvements.

c. Project 411L, E3-A (formerly AWACS).

d. Project 427M, Norad Cheyenne Mountain Complex Improvement Program.

e. SALTY NET III. This added a new capability to the existing TACS.
This made it possible for the TACS to achieve physical and operational
interoperability with NATO Units via the Link 1 Communication channels.

25

f. Project BARSTUR, an underwater tracking range system installed forthe Navy near Hawaii. This project involved direct software implementationexperience while working for a contractor (ITT Laboratories, Nutley, NJ).

a. Software Acquisition Management Guidebooks. This work involvedextensiv(review of current Air Force standards, regulations, and practicesthat may be applied to embedded software acquisition. The intent of thisproject was to explain and clarify the software-related aspects of theacquisition process.

It should be observed that while this Model was built upon experienceinvolving many projects over many years, these constitute but a small fractionof total Air Force acquisition experience. For this reason, changes in the
Model should be expected as the experience base grows through constructive
review by persons familiar with other system acquisitions and as the Model isapplied to new acquisitions.

26

9-4

uI 00 ci

u2Ibo 0
ITT ellw W w0

u) u C) -H C
z 2t ~ 4 $4

$4* 0 44 tWU
ow rnda 0

z ~0

0140 0*44
0

E-40
411

* _ _ __ _ 4 .4

- - 00

4. 1-4 1

.4

.e

0)0.0 -4

C: JU 101

1-4 1"4 -A 0

U)
0)

z 04 -41 00Z

27

-~ 0 0

-' w

00

4C

eqj

44 w 0

0 OX

U 4

cli 91. 0OD

inU fi 0

cn 0 %0

.. I

01 TA4 04 x
w 40~ 0 = -cf

In~. A. W
-~ ~ 4

28o

!- A3

b3C4

r 7..9

00

U iU

f~1.4

u C4
13J

goE. cn*

C4. o., 91
0 0

U tcvn

0

1.4

0129

-4

U) ow
H0

* 0
0

00

E-4S

* 0
-a &t~ '-4--

0
U3I

W 0a

ci to0

H ~ 4 .4~O C$ 30

ta
E-4

E-4 u-4

P4

000

A. rzI P4H

U UU u)

U a

H U 0

P4.

E-4 04 w4

E-4CI

04.

H E-4

caa

HP-4

311-

SECTION 5

PROCESS QUANTIFICATION

The Process Flow Diagrams and Amplification Notes discussed in Section 4
describe the sequences of activities and decisions involved in the acquisition
(including development) of embedded software. Since this description is
qualitative, it can yield no quantitative predictive output. In this section
means are described for adding quantity and probability to the Process Model.

Ultimately, the parameters used and their relationships will be expressed
generically so they can apply to a wide range of projects. That task is most
difficult and will require data sources with much better definition and
control than are now available. For example, the planned ESD Software
Acquisition Resource Expenditure (SARE) reporting system will yield such data.
For this year's effort, quantities have been developed to reflect those
obtained on a typical Air Force system. This approach involved the steps
listed below and described in the following paragraphs:

a. definition of a typical system's software;

b. selection of parameters to define each type of functional element
contained in the Model;

c. estimation of parameter values for each Model element;

d. calibration and refinement of the estimated data.

5.1 SOFTWARE DEFINITION FOR A TYPICAL SYSTEM

The size of a typical project's software generally falls between one
hundred thousand and one million lines of code. For our work, an earlier
project (with which the first author was familiar) was selected as a mid-range
example. This project, 407L - Tactical Air Control System, was first
developed about ten years ago (1967-1971) and is still being used. The data
used herein do not correspond exactly with those of the original development.
Instead, they have been modified to reflect changes in the evolving
development process, including improvements in tools and techniques as well as
increased training and deeper skills. In addition, all computer program
sizes, time durations, and manpower levels have been smoothed and rounded.

Based on the above, the CPCI composition of a typical system was defined,
as shown in Figure 6, Typical Project - CPCI Breakdown. The most significant
and generally most critical of these CPCIs, (i.e., the real-time system
Operating Program) was used to estimate the typical CPCI-level data for use
with the Model.

32

A related milestone schedule is shown in Figure 7, Typical Milestone
Schedule for Operating Program. Note that while 407L actually consumed 42
months, the 30 month schedule in Figure 7 reflects our assessment of the
industry's current capability. Similarly, the corresponding contractor
manning profile, shown in Figure 8, Typical Manpower Utilization Levels, is
considerably lower than that expended during the actual project. Finally,
although the original CPCI was not divided into Developmental Integration
Groups (DIGs), our Model assumes a three-DIG division.

A set of manpower cost figures, based on projected manpower usage and
reflective of current labor rates, is shown in Figure 9, Typical Manpower
Costs for Operating Program CPCI. These figures, which should be viewed as
rough approximations, are adequate to support their purpose in this study,
which is to provide a basis for the calibration and refinement of the initial
parameter value estimates. Consequently, they ignore the time value of money,
which later Model versions will provide for. Also, Figures 8 & 9 combine (as
SYS/TEST) systems engineers, analysts and test engineers, because often the
same personnel perform these functions at different times during an
acquisition program, and thus earn at comparable rates.

5.2 PARAMETER SELECTION

For each of the three basic box types represented in the LoSim and
Process Flow Expansion diagrams, the following types of parameters have been
selected.

5.2.1 Activity Box Parameters

Each activity consumes resources, including manpower and time, often
expressed as man-days. However, since the number of man-days is strongly
influenced by the manning level, it was decided that both an appropriate
manning level and a duration would be assigned to each activity. We plan
during FY 80 to estimate other needed resources, such as computer time, but
have so far concentrated on manpower because it is normally the resource of
overriding importance.

Note that the initial Model version represents the manning levels and
durations independently; however, their estimates were developed jointly.
Ultimately the Model will relate these and other resources explicitly, through
parametric equations, which will also reflect explicitly the effects of
software size and difficulty, development aids, management policies, etc.

A number of persons typically works on several concurrent activities on a
split time basis. The Model allows, therefore, for fractional manning levels.

In addition, any activity may need to be repeated (possibly several
times). Thus, iteration factors are provided to change the duration and
manning levels appropriately for each successive iteration.

33

5.2.2 Decision Box Parameters

During the early development of the process flow logic, no restrictions
were placed on the number of outcomes per Decision Box. As the logic matured
it was observed that only a few decisions had more than two alternative exits.
Since a uniform dual exit structure would simplify the design and
implementation of the Simulator, and since dual exit boxes could be readily
staged to reflect multiple decision results, Decision Boxes were restricted to
two mutually exclusive exits. All decision questions were then phrased to
allow answers to be uniformly expressed as "Yes" or "No". On this basis the
probability of taking the "Yes" exit (pYES) was assigned to each Decision Box.
(Since pNO = I - pYES it was unnecessary to assign "No" exit probabilities.)
Since iteration can cause multiple reentry into a Decision Box, a
corresponding set of decision probabilities was assigned to each iteration.

The assigned probabilities are typical of those observed on military
procurements. Experience can vary widely, however, depending on factors such
as contractor skill and experience, schedule and cash-flow pressure,
government monitoring zeal, and urgency of need for the software or the
system. Fzuture Model versions will allow the probabilities to vary with the
quantity and quality of the effort expended on the products on which the
decision is based, as tempered by the expected contractual environment.

5.2.3 Special Event Box Parameters

The Special Event Box supports two different functions. One of these is
to provide a label for important events, usually called Milestones, because a
Milestone may not correspond exactly with any Activity Box or Decision Box.

The other Special Event Box function is to effect action at another point
in the process (e.g., to increase the ECP frequency after each specification
is delivered). While the Special Event Box is little used in the initial
Process Model version, future versions will use it extensively to allow the
computed quality of earlier activities to impact subsequent activities or
decisions that depend upon the earlier work.

5.3 PARAMETER VALUE ESTIMATION

Specific estimates of typical parameter values were required for each
Activity Box and Decision Box in the LoSim Process Flow Diagram. The Activity
Box estimates were made by evaluating, based on personal experience, the work
that must be accomplished per box and a reasonable manning level for its
accomplishment. The Decision Box outcome probabilities were estimated
similarly. These approximations need not be very accurate during early
exercise of the Model. They can be improved by the calibration process
described below. Appendix B describes and contains the parameter estimates
made to date.

34

5.4 PARAMETER VALUE CALIBRATION

Since no objective (i.e., measured) data are known to exist for most unit
tasks (activities) and decisions defined in the Model, the initial parameter
values were obtained as estimates from persons familiar with the overall
process. While such values are suitable for Simulator development, the
validity of the results obtained during its initial use will depend on the
accuracy of the parameter values assigned. Even though Model uses such as
sensitivity analyses can be helpful with roughly approximate data, the
validity of and confidence in such results will be higher if the Model
produces data which are consistent with normal experience.

Even though no objective data are available for most unit tasks, some
cost and schedule data are available for the overall software acquisition
process. While these data vary greatly, typical data can be chosen that are
well within the range of common experience; the data described above are an
example. The calibration process described below uses typical overall cost
and schedule data to improve the initial estimates.

5.4.1 Activity Box Timing Calibration

Calibration begins by bringing activity timing into conformance with a
typical project schedule, such as that shown in Figure 7, as follows:

a. The original time estimates for the unit activities are summed in
conformance with the sequences shown in the LoSim Process Flow Diagram
(Figure A-2). This requires that the Activity Box timing data and Decision
Box probability values be taken into account with both reflecting the effects
of iteration. The details of this process are shown in Figure D-l, Activity
Duration Calibration, and the data obtained are summarized in Figure D-2,
Activity Duration Calibration Summary.

b. Using the data obtained in Step a, a most probable schedule is
derived showing the principal acquisition Milestones.

c. The milestone timing obtained in Step b is compared to these same
Milestones shown in a typical acquisition program schedule, derived as in
Section 5.1.

d. A correction factor is then calculated for each inter-milestone time
period. Each correction factor is then applied against all the Activity Box
timing values within the corresponding inter-milestone period.

This process was applied to the main (critical) path of the overall
process, covering the period from contract award through Formal Qualification
Testing (FQT). The results, summarized in Figure 10, Activity Duration
Calibration Summary - Main Path, show the timing after the calibration
correction factors were applied, and after the average effect of iteration had
been included. Figure D-2 gives the same summary data but shows the original
estimated data with iteration and, also, the calibrated data without
iteration. By comparing the figures it can be determined that multiplication
by a factor of 0.75 was needed to bring the original estimates into

35

conformance with the typical schedule. The results also show that iteration

increased the overall acquisition process duration by an average of 28%.

5.4.2 Hanpower Assignment Calibration

Once timing values are established for the main path activities, and the
effect of iteration is taken into account, the estimated manpower assignments
to each Activity Box can be calibrated as follows:

a. An overall timing diagram is drawn, as shown in Figure 11, Program
Acquisition: Activity Sequence and Timing Diagram. Every activity is then
placed on the diagram at a location conforming with its predecessors' iterated
duration. This diagram thus shows what activities are likely to be going on
at any time during the project.

b. When the manpower levels for each activity are each assigned to its
appropriate time period, it becomes possible to sum the manpower level at any
point in time.

c. When these summed manpower assignments are plotted vs. time, a
manpower need profile is created for each category of personnel.

d. The manpower needs can then be compared with the typical manpower
utilization levels shown in Figure 8.

e. The manpower levels assigned to each Activity Box can then be
adjusted (and smoothed) for approximate conformance with the levels expected
on the typical project.

The timing layout shown in Figure 11 preserves the functional and
connective relationships among the activities developed on the LoSim Process
Flow Diagram (Figure A-2). To facilitate reference to Figure A-2, the same
connector identifications were used in Figure 11. Further work on the
manpower assignment level calibration was deferred to FY 80, because Simulator
design was deemed more urgent.

5.5 FUTURE ACTIONS

Several types of action will be taken in FY 80 and later to improve the
accuracy of the Process Model parameter estimates, and to relate these
parameters explicitly to one another and to other factors believed to affect
the elapsed time and costs of embedded software acquisition. The most
promising of these types of action are listed below, roughly in order of
increasing difficulty and remoteness. Each is then briefly discussed.

a. review by a panel of experts;

b. training course use and follow-up;

c. sensitivity analysis using simulation; and

36

d. analysis of formally collected data.

5.5.1 Review by a Panel of Experts

The parameter values currently established represent the views of the
authors. While we have had considerable experience with military project
monitoring, as well as computer program development, the current data are more
reflective of subjective evaluation and remembrance than of objective record.
Such subjectively derived data can be improved by including the opinions of
many experienced personnel. While such a panel would provide a basis for
consensus values, it also would very likely show significant differences;
these latter point to areas where further work should be concentrated. While
the initial estimates should involve MITRE/ESD personnel, contractor employees
with experience in military system development would also be valuable
reviewers. These latter persons would be particularly qualified to provide
estimates for activities normally performed by contractors.

5.5.2 Training Course Use and Follow-Up

One of the anticipated uses of the Process Model is for training military
(and support) personnel for work on system acquisition. Such training would
include instruction on the use of the Model for project forecasting and
project monitoring. During the initial training classes, it will be necessary
to stress the tentative nature of the initially used parameter values and the
consequent need for tuning against real contract data. After a cadre of
trained persons become involved in system acquisition, their reports on time
and cost inconsistencies between the actual and forecast figures will become
available. Cognizant personnel at the Model improvement and maintenance
facility should use these reports as a basis for adjusting the parameter
values (and cost estimating relationships) to improve the fit between Model
data and actual results.

5.5.3 Sensitivity Analysis

The parameter value calibration procedure described in Section 5.4 was
slow and arduous because it required manual tracing through the complex
network, including Integration Groups and iteration loops, while time and
manpower values were calculated and summed. Once the Simulator becomes
available, the network tracing and computation will become automatic, fast,
and accurate. This will allow the effects of parameter value changes to be
reflected immediately into consequent results. By using this sensitivity
analysis technique in this manner, the network can be tuned quickly to reflect
actual experience on past (as well as current) projects.

In particular, when the typical project estimates used in the current
Model are replaced by generic functions, sensitivity tests can support the
verification of these functions and the tuning of the associated parameter
values. This generic tuning and verification procedure is too complex to be
performed manually. For this reason, quantification refinement by this method

must be deferred until the automated Model becomes usable.

37

Once the Model comes into use as a contract monitoring aid, feedback data
on the results of its use will allow the quantification of functions and
parameters to be periodically improved and refined. At the same time, use of
the Model will provide an early indication of trends in the quality of system
acquisition on an industry wide basis. It will also provide a means for
objectivly comparing the quality of performance of different contractors, even
on different projects. When this point is reached, meaningful performance
incentives can be added to acquisition contracts.

5.5.4 Analysis of Formally Collected Data

A separate ESD/MITRE activity, the SARE reporting project, is developing
requirements for the uniform reporting of contractual performance data. When
SARE is applied to future acquisition projects, the data collected can provide
a basis for establishing the quantitative relationships needed for the Model.
Because of the close relationship between the SARE project and the Process
Model, compatible cost relationship structures are being planned.

38

-

CO C.)

1-4 U. 0.

C44 C.4w4

0) c

IL) Cu r44 N n I
H 044$0)

H CL 0 060(
CI LA) N -r4A0*

C.4 4. -4- 4 o4
0)C. 0. :1

W 0 0r- M ~ r. .I4.

u G-I e incn0 0)
-1 wJ. *-

1 C4 0r0 Cu
U) w

0- C.)0 A 4AJL
00)1. 4) 4)

0r 00 0 0 0 0

- - -. J 41C ul cu
U- -r4 1 .41
:3 J~ Aa U -4

gow 14CA A)

0- CL. > A N CAC1. 0 04

a) A

r.1.40 co

LA 0 11 10 0 Odd g w "
00 N1 cl CN -T 0 " wCuIH4 ~0

C1 1)~ 41-4

U)) W p.m
a) .0 0 00

-404 *H 0

to " _) C 4CY0 41 41
0- CS4 UH *4-4 0 W Uu

o PO 0 00 Cl4 r4J)

'- '- w- C.) 4) - 41

U CO C)1-4 I4 40. ~w
-4 u 0 1-4 ,.H04J

E-4 0 03 CAQ. 41 J4
:D I * 40) 4 rI

AlzA 0 r. C

0 4 -I 1-4 M4-4

.4 Wo .l 44. P 'I

-4 4 C4 1; LA 04 j

39

4

be
0

bo

0

IV'

ZO 0

P4.

H02
4=11

400

C-4

0'

4 N4

N4 a

fn -4

+ 0
o -A

144

r4.

m IT

Nvo Lfl ,- 4)

Nh

410

-1 04 0n 0 0

a)a

NO

0 W8

00

0

0 4
as 0

.0 as
440tA WIa

429.

0 %

-

4

L-4>,
(n I

ON E--

Ln 0 0

010

-H

U-S. 0 0-

Cl 0 0U4 U 0 "4
AA 04

$4

0 ' ~ *44 1

u 00r.

m 4-I

04400

402 -

4j (P

r.U w U G .

(00 0 0

'-4

C4.0

43

C4.

C4

I 00

C4o

00 0. G-oI
44 _ _ _ =r

- w)

444

0
N 4

u 60

0 00t

000

14-
4 4

4 00

cni

41 C. 0

*P4 0,
4I Cl, U

C44
C44

-44 V0

4 4.,

C.) 00 0,
0 N p

C.) 4

4 UN
06

44

C44
4D 41 44

C4 68

"E-

UV

__ _ _ __ _ _ N 18
N -N

4 ca

"4V -H0 5

_ _ _ _ _ _ _ _ _ _ _ _ 0 00

N N 0
co Go

00 0

N 4 cm

* 44
00 00 G

"4~~6 _ __ _ j _

OD N

V4.5

00

"4 "

465

Ln'

r.

"4

0

0

m -

cn a)

Go -i-

o

u LM
o

0

cn

cjo

oo t

C-4
c"

"4"j

u r40M 4

474

00 10

14

Cui

0)

4 04

I 48

0

E1-4

L.1-

I r

Lf0)

LA 0

Ln J

n

4o 0

0 Q)-
a .74

Ln
"-4

494

DIAGRAM NOTATION

1. General:

Abbissa shows elapsed time (workdays) from start of contract.
Critical path is shown on the uppermost path.
The diagram was drawn to show three DIGs and one TIG.

2. Drawing Conventions:

Dot is the start of a box.

Arrowhead is the end of a box.

Solid Line is the duration of a box.

Dashed Lines show paths to activities
not depicted on this
abridged diagram

Dashed Dotted Lines indicate slack time in
the dependency sequences

Connectors A C Incoming connectors
(A&B) extend to the
left

Outgoing connectors

(C&D) extend to the
right

3. Labeling Conventions:

Box numbers are shown on or near the solid line; subscripts
denote group number.

Lettered connectors correspond with those shown on the LoSim
Process Flow Diagram, Figure A-2. Interior subscripts
denote group number; exterior numerals denote the destina-
tion page.

Numbered connectors apply just to this drawing. Exterior numerals
denote the destination page.

Figure 11. Program Acquisition: Activity Sequence and Timing Diagram

Sheet 7

50

SECTION 6

PROCESS SIMULATION

Except where otherwise stated, this section treats the development and
characteristics of the initial Simulator version, Model 0. We intend Model 0
to be a relatively simple computer program that proves feasibility and that
provides a sound basis for extension. We also intend Model 0 to produce some
useful results; i.e., those indicated in Section 6.6.1, Model 0 Output
Reports.

The principal Model 0 reports will be profiles of the manpower needed to
perform the network's activities, and a schedule of the major activity groups
(termed Subnetworks). These reports will reflect logical precedence
constraints but not manpower constraints because the latter, although
important, appear difficult to model realistically.

The main improvement planned for Model I will be inclusion of one or more
algorithms to allocate scarce manpower, and to effect delay whenever too
little of the right manpower type is available. Model I will also produce
dollar cost profiles and more elaborate schedules. Models 2 and 3 will each
have additional important capabilities. See Section 6.6.2, Future Model
Output Reports.

6.1 DEVELOPMENT FACILITY AND SIMULATION PROGRAMMING LANGUAGE SELECTION

We approached the problem of selecting a development facility and a
simulation programming language for initial Simulator development as follows.
First, selection criteria appropriate to project needs were established.
Then, promising candidates about which information was readily available were
evaluated using the criteria, and choices were made. We first selected the
development facility, because we deemed it more important than any specific
simulation programing language, provided the facility supported an adequate
language. This choice narrowed considerably the number of candidate
languages.

6.1.1 Facility Selection

Six factors were deemed essential to the initial Simulator development:

a. affordability within project budgetary constraints;

b. capacity adequate for efficient compilation and execution;

c. system availability to Simulator development personnel;

d. turnaround time for Simulator development runs;

e. quality and availability of help to solve apparent system problems;

51

f. availability of an adequate simulation programming language.

Because our budget had no funds for commercial computer rental or
purchase, we ruled out the use of commercial time-sharing services or block
computer time rental. Nor could we purchase a computer. Criterion a. thus
limited us to shared use of an Air Force or MITRE computer.

Previous experience has clearly shown that successful discrete event
simulation requires substantial main memory and central processor capacity,
especially as the complexity of the simulation program grows and the frequency
of simulation runs increases. For this reason (criterion b.) we restricted
our search to a large-scale computer, ruling out mini-computers, including one
otherwise attractive candidate, a MITRE PDP 11/45.

Criterion c. meant that project programming personnel must have the right
to use the computer at reasonable times, and that during most of these times
they should be able (directly or remotely) to access the computer to enter
data, execute programs, and obtain output. As a practical matter, criteria
a., b., and c. jointly limited us to three computer systems: the Air Force
Geophysics Lab CDC computer, the RADC Honeywell 6180, and the MITRE Bedford
IBM 370. Our choice among these candidate computers was based primarily on
criteria c., d, and e, since a satisfactory simulation programming language
was available, or could readily be provided, for each candidate.

We judged our ability to use the IBM 370 far superior to our ability to
use the RADC Honeywell 6180, mainly because we had very limited access to
suitable terminals capable of flexible input and the high-volume output that
simulation program development sometimes demands. In contrast, we could use
several conveniently located CRT terminals directly connected to the IBM 370,
and could easily walk to its dispatcher's desk to pick up printouts.
Practical use of the Geophysics Lab computer would have entailed frequent,
time-consuming trips to Hanscom AFB.

The MITRE Bedford Computer Center also provides expert help in the use of
the computer and its system software. Because of its proximity, we decided
that this help was superior, for our project personnel, to that available
elsewhere. For these reasons we selected the MITRE computer.

6.1.2 Simulation Programming Language Selection

Given the choice of installation, our practical choice of languages
comprised PL/l, PASCAL, FORTRAN, GPSS, GASP IV, and SIMSCRIPT II.5. We ruled
out PL/I in part because it has few compilers for non-IBM computers. The
Simulator should ultimately be transferrable among several different computer
families; this would be difficult unless the Simulator were coded in a
language supported for several machines.

PASCAL, despite some attractive features, lacks a well-tested compiler at
the MITRE Lomputer facility. This eliminated it from serious consideration,
because our budget and schedule precluded our risking serious support software
problems.

52

JE!,

In practice FORTRAN is as nearly universal as any programing language in
use today. However, we ruled it out, at least for early Simulator
development, because (like PL/1 and PASCAL) it lacks a timing routine and
other specialized features helpful to simulation. We believed (and still
believe) that a higher-level language could reduce Simulator development
effort.

In contrast, GPSS is a high-level language designed expressly for
discrete event simulation. However, it seems unable to support easily the
kind of table-driven program design we envisioned. In addition, we have
previous experience indicating excessive GPSS storage and execution time
requirements as a simulation program grows. GPSS is also limited mainly to
IBM computers, which would impair transfer of a GPSS Simulator. For these
reasons we rejected it.

GASP IV is really a collection of FORTRAN subprograms (e.g., a central
timing routine) designed to simplify development of simulation computer
programs written in FORTRAN. Because these routines appear quite helpful, and
because GASP IV programs are as easily transferred as FORTRAN programs (e.g.,
only a FORTRAN compiler is needed), we considered GASP quite seriously. We
still deem it a good second choice. However, we selected SIMSCRIPT 11.5 over
GASP IV because of the former's more easily readable vocabulary (helpful for
self-documentation) and better diagnostics. Also, former SIMSCRIPT 11.5 users
at MITRE recommended it highly and could be consulted for help.

Our experience with SIMSCRIPT 11.5 to date has generally been favorable.
We plan to continue using SIMSCRIPT 11.5 unless severe problems emerge. If
they do we may switch to another simulation programming language.

6.2 DESIGN OVERVIEW

Simulator Model 0 will consist of three basic parts: (1) the Data Input
Processor; (2) the Simulation Conduct Processor; and (3) the Output Report
Generator. The three processors will execute sequentially. The first will
operate on input data sets defined in Appendix B to produce part of a data
base described in Section 6.3. The second (the Simulation Conduct Processor)
will be driven by these data. As a result, the Simulation Conduct Processor
will develop simulation statistics which it will store in this data base. The
Output Report Generator will then edit and print these statistics. The
designs of the Data Input Processor and the Output Report Generator are
straightforward. The design of the Simulation Conduct Processor is rather
unusual (for a simulation program), and thus worth brief discussion here.

The Simulation Conduct Processor will be table-driven. Thus, the
complete Model will be defined by a set of table data such as those given in
Appendix B. Each of the two-hundred plus boxes included in the LoSim Process
Flow Diagram of the Full-Scale Development Phase, discussed in previous
sections of this report, is described by an entry in Table B-I and another
entry in Table B-2, Table B-3, or Table B-4. After the Data Input Processor
has reformatted these tables, the Simulation Conduct Processor will read the
data for the first box, take actions which depend on the box type (e.g.,

53

Activity Box, Decision Box) using the assigned parameter values (e.g.,
activity duration or decision probability), and save any data needed to
describe the results. It will then proceed to each of that box's immediate
successor boxes; these will be processed in appropriate sequence until all
boxes involved in that pass through the network have been accessed. Since the
Simulation Conduct Processor's path through the network will be determined by
Monte Carlo selection of alternative Decision Box exits, a different sequence
of box activation and results will be likely on each path. Thus, the program
must repeat many times (per another input parameter) to obtain statistically
significant results.

This design concept was selected because of several desirable properties.

a. The Simulator's description of the process is easily changed;
therefore, the nuances of each acquisition program, new facts, revised
assumptions, alternate policies, etc., can be modeled readily by appropriate
changes in the Simulator's inputs.

b. The computer program is small and straightforward, because only a few
general routines are needed to interpret the tables.

c. The program so written can directly accommodate Process Flow Diagrams
and parameter values developed for other acquisition life cycle phases, or
even for different processes. For example, it could readily simulate:

(I) the other aspects (e.g., the hardware-related and personnel-
related activities) of Major System acquisition programs;

(2) programs managed per AFR 300-series regulations;

(3) acquisitions conducted per Army, Navy or other agency
regulations;

(4) other processes that principally involve groups of people
working toward common goals.

As a result, in contrast to many simulation programs, which have a block of
code for each different section of process flow, the Simulator promises to be
relatively simple to build, easy to adapt or extend, and inexpensive to
maintain.

6.3 DATA BASE

A central data base referenced by the three processors is essential to
this design concept. The part of the data base that defines the process
network, the process parameters, and simulation options, will be created by
the Data Input Processor from inputs defined in Appendix B and illustrated in
Tables B-i through B-4. The Data Input Processor's primary function is to
transform this input into a structure that the Simulation Conduct Processor
(which will execute many times per simulation run) will process efficiently.
The structured input data will then guide the Simulation Conduct Processor

54

through the network, developing and storing the data needed by the Output
Report Generator.

The structure and content of the data base so far developed for Simulator
Model 0 is shown in Figure 12, Data Base Structure. Extracts from the
compiled version are included within Appendix E, Simulation Program Listing
Extracts. The figure shows a Main Entry for each box of the Model. This
contains information of general utility that occupies a fixed amount of
storage. Each Main Entry also contains pointers to as many as five lists
(called Sets in SIMSCRIPT 11.5) which contain the remaining data for the box,
as explained below.

6.3.1 List Structure

The data base structure relies on the list-handling capabilities of
SIMSCRIPT 11.5. As described below, list structures help to deal with the
complex data that characterize the Process Model design. In Model 0 the
following lists may belong to each box's Main Entry:

a. A Pred lists all boxes that are immediate predecessors of the owning
box. It also defines conditions for starting that box, for iterating that
box, or for executing that box for different Integration Groups. A Pred is a
list because a box may have a variable number of predecessors.

b. A Yes.Succ lists all boxes that immediately follow a Decision Box's
"Yes" exit. A Yes.Succ also lists the immediate successors of an Activity Box
or a Special Event Box.

c. A No.Succ lists all boxes that immediately follow a Decision Box's
"No" exit. A No.Succ for a Special Event may point to other boxes which are
the objects of parameter changes or reset actions. The No.Succ pointers of
Activity Boxes are empty.

d. An OTD (Occurrence and Timing Data) lists certain data (e.g.,
predecessor completion data, start and finish times) that may vary with DIG or
TIG. There is one entry in the list for each DIG or TIG. For boxes not
involved in DIG- or TIG-repetition, there is one OTD entry.

e. An ATM (Activity Timing and Manpower) lists the estimated manpower
levels (by manpower type) and durations necessary to complete each activity.
There is a separate ATM Entry for each DIG or TIG, if any. Otherwise there is
a single ATM entry for the activity as a whole. Only Activity Boxes have
AThs. The ATM pointers of Decision Boxes and Special Event Boxes are empty.

6.3.2 Data Packing

Figure 12 shows that SIMSCRIPT 11.5 permits packing several data fields
into the same computer word; e.g., word two of the Main Entry contains seven
different data fields. This significantly reduces the storage space needed to
contain the data base.

55

6.3.3 Data Base Size

The data base thus far defined in detail ior Simulator Model 0 at the
LoSim level comprises about 11,000 computer words, as shown in Figure 13, Data
Base Size. An average of 57 words of storage is needed per box.

The data elements defined in Figure 13 will store model definition
information and some interim run results, plus some overhead (pointers and
counters). The latter are needed to preserve the relationships among the
separately stored segments of data. By counting the overhead words, the
overhead was found to account for about 20% of the total.

In addition, the system will require storage for system and local data
plus storage for data extracted for statistical analysis. These storage needs
have not yet been defined in detail. Thus, they cannot yet be quantitatively
analyzed, but are believed reasonable.

6.4 DATA INPUT PROCESSOR

The Data Input Processor will read in the designated Model definition
data (per Appendix B), and (in later Simulator versions) data that describe
the system environment and output options. It will check this input for
format, consistency, and completeness. If the data do not meet all acceptance
criteria, the program will output appropriate diagnostic messages; otherwise
the data will be restructured and loaded into the data base.

The Data Input Processor will then initialize the Simulator to begin the
specified number of passes through the network, and will then transfer control
to the Simulation Conduct Processor. A compiler listing that includes the
Data Input Processor code written to date is included within Appendix E.

6.5 SIMULATION CONDUCT PROCESSOR

This program will traverse the network from the initial element (e.g.,
Box 2A) through the final elements (e.g., Boxes 82Y and 54V). It will
simulate each activity and decision (and will perform every Special Event),
along paths selected randomly per decision probabilities. While following the
network, it will develop statistics on decision outcomes, delays, demand for
resources, resource utilization, iteration, etc.

The Simulation Conduct Processor will repeat its network traversal as
many times as specified in an input parameter termed N.Repetitions. During
each traversal it may follow a somewhat different path, because different
decision outcomes will be selected randomly. The Event Notice technique,
provided by the SIMSCRIPT 11.5 language, will control the Simulation Conduct
Processor as described below.

56

6.5.1 Event Notice Concept

a. A SIMSCRIPT 11.5 Event Notice initiates a defined set of activities
at a scheduled simulated time, specified in each Event Notice. The
SIMSCRIPT 11.5 Schedule verb creates each Event Notice and files it in an
appropriate list.

b. The designer can define any number of different Event Types. For
each Event Type there is a defined set of parameters, and an associated
computer routine (termed an Event Routine) which accomplishes the functions
specified for that Event Type. These functions may include scheduling
additional Events.

c. SIMSCRIPT 11.5 maintains lists (one for each Event Type) which hold
Event Notices waiting to be processed. Whenever an Event Notice has been
processed it is normally destroyed, and control returns to the SIMSCRIPT 11.5
timing routine which searches all the Event Lists to find the Event Notice
with the now earliest scheduled time. Special priority logic resolves ties.
The timing routine then actuates the earliest Event and sets Simulation Time
to that Event's time.

d. Every SIMSCRIPT 11.5 program includes a Main Program. Among other
things this must schedule at least the first Event and start simulation; i.e.,
transfer control to the timing routine to select the first Event Notice to be
processed. When the timing routine exhausts all Event Notices, it returns to
the Main Program.

6.5.2 Event Notice Use

Simulator Model 0 has been designed to use two Event Types which are
defined in Appendix F, Event Notice Specification. One of these (Box.Proc)
performs the processing associated with the particular box designated in the
Event Notice. This one Event Type will be used to process all box types used
in the Model.

The other Event Type (Flow) will be scheduled each time Box.Proc
completes its processing. Flow will perform any needed termination processing
for the designated box, and then update and examine the input status for each
of the boxes that imediately succeed the designated box. For each of the
successor boxes on which all input conditions have been satisfied, a Box.Proc
Event Notice will be scheduled.

6.5.3 Simulation Conduct Operation

The Simulation Conduct Processor will begin after the Data Input
Processor has loaded and reformatted the input data, and has created and
scheduled an Event Notice for the first box of the Model (e.g., Box 2A). Then
the SINSCRIPT 11.5 timing routine will be called. When it searches its Event
Notice Lists it will find just the one Event Notice (a Box.Proc for the
initial box) inserted by the Data Input Processor. The timing routine will
then set Simulation Time to the Event time (which is zero) and call the
Box.Proc Event Routine. This will begin a sequence of Event Notice processes

57

such as that diagrammed in Figure 14, Event Notice Processing Sequence. This
figure shows how the Event Notices are linked together to accomplish the
actions described in the simulation tables; it provides an abridged view of
the process up to PDR #1.

As shown in the figure the first Box.Proc (for Box 2A) will accomplish
the functions associated with Box 2A (an Activity Box), and then schedule a
Flow Event to occur on day 10 (because (per Table B-2) the activity duration
of Box 2A is 10 days). The Flow Event Routine for Box 2A will terminate the
Box 2A activity and then (per Table B-i) schedule two new Box.Proc Events (for
Boxes 4A & 4S) for immediate action. The Box 4A Box.Proc Event can only
update status; it needs another input (from Box 4S) before its activity can
begin. When the Box 4S Event does begin it will schedule a Box 4S Flow Event
for 15 days later.

The SIMSCRIPT 11.5 Controller will now find that the Box 4S Flow Event is
the earliest so it will add 15 days to Simulation Time and then invoke the
Event. The Flow Event program will now create immediate Box.Proc Events for
the three successors of Box 4S: Boxes 4A, 60A, and 62A. Box.Proc processing
for both boxes 60A & 62A will begin immediately; for each a Flow Event will be
scheduled. A Box.Proc Event for Box 4A will also begin immediately because
both of this box's inputs (Boxes 2A and 4S) will be satisfied; it will
schedule a concluding Flow Event for Box 4A 10 days hence. The Box 4A Flow
Event Routine will then schedule immediate Box.Proc Events for its successor
boxes (4C, 6A, 53A, and 53C).

This interlaced Box.Proc and Flow Event processing will continue until
there are no more Event Notices to process. Several cases not described above
deserve mention. Whenever a Decision Box Box.Proc is processed (as shown for
Box 6E) the exit will be selected in zero Simulation Time. The diagram shows
that the "No" exit would be selected on first pass (day 72) so the diagram
shows the iterative return to Box 6A. The next time 6E would be reached (day
84) the "Yes" exit to Box 6G would be shown.

The other feature involves the handling of specified internal delays;
e.g., on Box 4E. In this case, the Flow Event for Box 4C (day 47) will detect
the Box 4E Wait and schedule the Box 4E Box.Proc to begin after the (5 day)
internal wait period.

6.5.4 Simulation Results Data Collection

During simulation conduct, timing, resource utilization, and decision
outcome data will be collected within the data base. A list of all such data
planned for Model 0 is provided in Appendix G, Demonstration Nodel (O)
Statistics Development. In general, data will be collected for individual
boxes, for the whole network, and for user-defined network subdivisions
(Subnetworks). The data will be collected primarily to support the needs of
the Output Report Generator program. Some of the data however, are planned to
aid test and verification.

58

6.5.5 Multi-pass Control

Because all Decision Box processing and most activity duration
computation will include probabilistic elements, each pass through the network
will yield somewhat different data. Therefore, as described in Appendix G,
each simulation run will include many passes through the network to obtain
results with statistical significance. The multi-pass control will provide
the means for conducting the input-specified number of passes, extracting and
aggregating the data from these, and reinitializing the per-pass data base
between each pair of passes.

6.6 OUTPUT REPORT GENERATION

When the Simulation Conduct Processor has completed its tasks, many
passes through the network will have been completed and raw data reflecting
the simulation results will have been accumulated. The Output Report
Generator will reduce this data into defined statistical results, and will
prepare reports which encapsulate them, based on report selection input
parameters.

These output reports will provide information about system entities at

three levels, as follows.

a. The lowest level entities are individual function boxes.

b. The highest level entity is the total network.

c. The intermediate level entities are subdivisions of the total
network, hereafter termed Subnetwor" s. Each Subnetwork consists of a group of
function boxes which the user may designate' to identify some larger
(aggregate) function. For example, all the boxes shown on Sheet 3 of the
LoSim Level Process Flow Diagram (Figure A-2) could be formed into a
Subnetwork which included all the detailed design activities. The Model 0
user will be able to define up to 15 Subnetworks, by marking each box involved
with the number of a single Subnetwork to which it belongs.

Whenever applicable, separate data values will be accumulated for those
components of the total which result from process iteration. Also, for
processes repeated for different Integration Groups, separate values will be
retained for each Group. For most statistical data, the mean value, the
standard deviation, the number of instances, the minimum, and the maximum
value encountered will be available for output.

59

6.6.1 Model 0 Output Reports

The Model 0 output reports are defined in Appendix G. In general, they
will provide the information listed below for each of the following types of
system entity:

a. Activity Boxes

(1) the time expended in waiting for all predecessors' input
conditions to be satisfied;

(2) the total time used for internal waiting (i.e. starting delays
inherent in the activity);

(3) the total time used performing the activity;

(4) the earliest start time and latest finish time;

(5) the count of the number of iterations; and

(6) the total of each category of manpower used.

b. Decision Boxes

(1) the predecessor wait and internal wait times as well as the
iteration count, as described for item a. above;

(2) the earliest and latest occurrence times; and

(3) a record of the exit selections made.

c. Subnetworks

(1) the earliest start and latest completion times (or equivalent
occurrence times); and

(2) the total of each category of manpower used.

d. Full Network

(1) the total of each category of manpower used;

(2) a profile of personnel use (i.e., manning level) for each
manpower category and total manpower; and

(3) a project schedule showing milestone times.

6.6.2 Future Model Output Reports

The model simulation technique is capable of producing much more
extensive information than that shown for Model 0. Examples of the inherent
possibilities are shown in Appendix H, Data Reporting for Later Simulator

60

Models. The growth in output capability is planned to be evolutionary. The
expected user participation during the growth period will help assure that the
reports will contain the information needed for the numerous applications seen
for the Simulator.

61

In

.
ink t

cn W

~ o 0

626

The model network at LoSim level includes 191 boxes (not
including ECP processing) with the breakdown shown in Figure 4.

Data base storage is based on 3 DIGS and 5 TIGS, as follows:

UNIT TOTAL UNIT STORAGE
ELEMENT COUNT COUNT (WORDS) TOTAL WORDS

BOXES 191 191 9 1719

PRED(ECESSORS) 286 286 2 572

YES.SUCC(ESSORS) 249 249 2 498

NO.SUCC(ESSORS) 57 57 3 171

OTD(1-Group) 113 113

OTD(3-Group) 51 153

OTD(5-Group) 23 115

TOTAL 191 401 4 1604

ATM(1-Group) 70 70

ATM(3-Group) 40 120

ATM(5-Group) 23 115
TOTAL 133 305 21 6405

TOTAL BOX DATA STORAGE 10,969

AVERAGE STORAGE PER BOX -------------- 57 WORDS

Figure 13. Data Base Size

63

o c0

%0 >4

040

'40

C4o

in4

Lei

ISO.

it it lo
c t0

C4~ C0 0

64

SECTION 7

ACCOMPLISHMENTS AND STATUS

7.1 ACCOMPLISHMENTS

The work to date on the Software Acquisition Process Model was conducted
and documented in three major time segments. During the initial phase, the
software acquisition problem was defined, prior art solutions were evaluated,
the Process Model concept was described, a number of applications were
identified, and Model feasibility was explored. The results of that work
indicated that the Model was feasible and desirable.

During the second phase of the project, major emphasis shifted towards
development of a diagramatic representation of the acquisition process which
could support the mechanization of the Model. Process Flow Diagrams in three
levels of detail were developed to a point where they'could be compared and
evaluated. It was concluded that the middle level was best for simulation,
while the other levels had supplementary value. During this period, the
initial Simulator programming language selection decision was made and some
exploratory coding was accomplished. Finally, the parameter value estimation
technique was selected and the decision was made to limit the initial scope of
the effort to the Full-Scale Development Phase of the overall acquisition
process.

With the preliminary investigation and decisions completed, the final
portion of the work to date was concentrated on development of a satisfactory
design concept and initial implementation of the design. The Model definition
process was refined and essentially completed. The quantification process was
extended to allow estimated parameter values to be refined by calibration.
During this final period, a very promising set of Simulator design concepts
was evolved and adopted. Much of the very rapid progress described in the
technical portions of this document are attributable to this design. As a
result, a successful outcome to this project is most likely and the problem
solving potential of the Simulator still appears to be viable and realizable.

7.2 CURRENT STATUS

The current status of the principal project tasks is described below.
All the status information applies to the work on Simulator Model 0 and the
Full-Scale Development Phase of the Major System acquisition process, which
has been the focus of the FY 79 effort. While quantitative terms have been
used to express the degree of completion ou some tasks, these are necessarily
approximate. Also, some work shown to be complete might require revision
later, because the close interrelationship between the various tasks could
cause new work to perturb previously completed work.

65

7.2.1 Process Model Definition

a. Overview Diagrams: completed

b. Simulation Level (HiSim and LoSim) Diagrams: completed

c. Expanded View Diagram: 20% completed

d. Amplification Notes: 20% completed

e. Network Linkage Table: completed.

7.2.2 Process Model Quantification

a. Parameter Selection: completed

b. Parameter Value Estimation:

(1) Decision Probabilities: completed

(2) Activity Timing: 50% completed

(3) Manning Levels: 25% completed.

c. Parameter Calibration:

(1) Concept: complete

(2) Timing: main threads (critical path only) completed

(3) Manning: 10% completed.

d. Parameter Tables:

(1) Structure and Definition: LoSim level complete

(2) Data Content: all current estimates are entered.

7.2.3 Process Model Simulation

a. Data Base Definition: completed for all box data

b. Data Base Coding: completed for all box data

c. Model Control Concepts and Structure: completed

d. Model 0 Outputs: defined

e. Future Model Outputs: tentative definition prepared

f. Event Notice Program Definitions: completed for all box data (except
for Special Event Boxes)

g. Data Input Processor Coding: mostly exploratory; 5% completed.

66

SECTION 8

ANTICIPATED GROWTH
AND PLANS

8.1 GROWTH AREAS

As part of the phased implementation approach being used on this project,
Model 0 includes a central core of essential capabilities with built-in growth
support features. Listed below are additional capabilities which are likely
candidates for inclusion in later Models. The growth areas have been grouped
into the task areas (i.e., Definition, Quantification, and Simulation)
previously used throughout this report. It is to be understood, however, that
each new capability will probably have some impact on all three areas.

8.1.1 Model Definition

a. The LoSim Diagram (Figure A-2) needs review by others and refinement.
It should be simplified by combining some lesser functions into larger ones.
It should provide for more flexible Integration Grouping; i.e., some difficult
tasks should be permitted to begin in Group I and to conclude with a later
group.

b. The FSD Model should be made to represent interdependencies among
CPCIs and also with any interfacing equipment Configuration Items (CIs) which
are being concurrently developed or procured.

c. Interfacing Models should be created for the other Major System
Acquisition Life Cycle phases, covering the embedded software acquisition
process; i.e., the Validation, Conceptual, Production, and Deployment phases,
probably in that order.

d. The Modeled process should eventually cover the procurement of entire
Electronic Systems, including the acquisition and development of special
hardware CIs.

e. The representation of the ECP process needs to be improved so that
its impact on and relationships with the other activities and discussions
becomes a reasonable reflection of actual practices.

8.1.2 Quantification

a. All currently used numerical values, which reflect "typical" usage
should be replaced by generic functional relationships, which can therefore be
applied to a large variety of contractual and developmental situations; see
Section 5.5.

b. The generic relationships should be developed in conjunction with
these developed on the SARE project; see Section 5.5.4.

67

c. The time, resource, and probability quantities associated with an
activity or decision should be made to reflect the quality of prerequisite
prior activities and decisions. While the quality of an intermediate product
(i.e., an output that is produced by an Activity Box) is not directly
assessed, it can be inferred in some cases from the quantity and quality of
the effort expended. I.e., if person (or group) with a given capability
requires thirty days to properly accomplish a task, but actually uses fifteen
days, the Model could assume that the output product is poor. Therefore, any
decisions based on the product should be biased toward non-acceptance and any
subsequent actions which use the product should be biased towards longer
duration or poorer quality. Similarly, if an acceptance decision resulted in
iteration of the activity (i.e., rework), the output product quality would
normally be improved. This quality dependency, while complex and difficult to
quantify, is necessary if the Model is ever to achieve a life-like
representation of the acquisition process. The draft Data Item Description
for SARE reporting includes parameters that define quantitative measures of
quality (and other factors that affect software time and resource
consumption). We expect that these, or variations of them, can be used in the
Model.

d. Resource utilization parameters in addition to manpower should be
included. In particular, facilities used for program development and for test
must each be quantified to reflect its maximum utilization rate as well as the
rate of use by each pertinent Activity Box. The Model must include capability
to represent separate quantities of as many kinds of resources as may be used.

e. The number of manpower types assigned to each task may need to be
changed to reflect subdivision beyond those currently used; see Section 4.1.7.

f. No dollar cost data are developed in Model 0. Dollar cost data
reflecting manpower use should soon be added, and that reflecting other
resources should follow shortly. The dollar cost data will also need to
reflect the changing value of money during the acquisition period.

8.1.3 Simulation

When implemented, all changes described above (e.g., those regarding
quality) will impact the Simulator. A few deserve special attention as
provided below.

a. The initial Model will maintain records of manpower usage, but will
not limit the quantities available. Since the resources available usually
constrain real projects, later versions of the Model will need to retain
quantitative data on the availability limits for each kind of resource. This
situation requires that the Model eventually reflect the following:

(1) Manpower availability varies with time as a result of factors such
as planned build-up and reduction, employee transfer or resignation,
and sickness.

68

(2) Other resource availability also varies with time due to equipment
acquisition time, equipment maintenance and unscheduled down time,
contention with other in-house projects, etc.

(3) On any real project, the allocation of scarce resources among
competing activities is resolved by real-time management action. In
a simulation model, the allocation is usually resolved by a
management stragegy function. Since many different management
strategies may be used including complex "look ahead" functions, the
development of this area is planned to proceed in an evolutionary
manner. Therefore, early versions will use simple, primitive
strategies (e.g., wait until all needed resources are available);
later ones will allocate and move resources on the basis of
impending urgency, including the effects of transiency.

b. At various points during a project, a completed event can trigger a
multiple burst set of like activities. E.g., completion of a CDR leads
immediately to simultaneous coding by many programmers on many program
modules. The initial Model treats these situations as randomly variable
phenomena, with each burst having one beginning and one end. On real
developments, the many unit tasks projeed with different rates and with
differing degrees of success. The'real world can therefore show integration
problems (e.g., a critical module is not ready) which are not reflected by the
initial Model. While it is not considered practical to model burst activities
at a level which reflects each worker's accomplishments, it will eventually be
necessary to find a modeling level which does represent multiple bursts
realistically.

c. The modeling of the development of multiple interdependent CPCIs can
be handled by the Simulator Model 0 design. Each CPCI can be separately
treated, with each independently following its normal process flow diagram,
with its own parameter values, function box numbers, and idiosyncratic
adjustments. To do this data which define all the CPCIs will be included in
the function box definition tables defined in Appendix B. All precedence
dependencies among the CPCIs will then be reflected by inclusion in the
Network Linkage Table (Table B-i); this treatment is therefore the same as for
intra-CPCI dependencies. However, later Simulator versions may incorporate a
way to treat multiple CPCIs more compactly.

d. The simulation of ECP behavior does create special simulation
problems, such as:

(1) ECP occurrences on real contracts are generally in response to
problem situations which cannot be forecast on an individual basis.
Certain periods during the development, however, are more prone to
produce ECPs. The planned Simulator design provides for spontaneous
generation of ECPs at a controllable rate which is randomized when
applied.

(2) The generation of an ECP consumes intrinsic effort which is easily
modeled. It can also profoundly effect the time and costs of

69

development activities not yet reached or may require rework on
already completed activities.

These effects can be simulated in the Model by the following means.
Special Event Boxes in the Model's ECP processor will alter the time and
effort parameters of the function boxes which would be affected by the ECP,
and that may still be reached. The ECP processor itself will include function
boxes to emulate any rework needed as a result of each ECP. The time and
effort impacts will have to be treated as widely varying random variables
which reflect empirical data gleaned from other like contracts.

8.1.4 Output Reports

The Simulator is planned as a general tool for the support of acquisition
programs that include software development. As such it can be useful for
project planning, proposal evaluation, contract monitoring, acquisition
strategy research, and development strategy research. The users' need for
information will reflect the specific application intended. While the initial
Simulator version will produce limited reports, future versions will provide
many more. For this reason, the Simulator will be designed to provide
different types of output reports, and will allow operator inputs to specify
and delimit specially desired data.

8.2 PLANNED FY 80 ACCOMPLISHMENTS

The completion of the Simulation Model remains a multi-year effort during
which a sequence of increasingly capable Models will be developed and put into
use. Assuming funding at the level of 2 MTS and appropriate computer time, we
plan to do the following in FY 80. The project's overall plan, covering past,
current, and future work, is discussed in Section 8.3.

The principal Simulator developments planned for FY 80 are completion of
a Demonstration Model (MO) and establishment of a firm foundation for the
Prototype Model (MI). In addition, the Model Definition work will be extended
in depth.

a. Demonstration Model (MO)

(1) Simulator Model 0 will be completely coded, compiled, integrated
and checked out.

(2) Model quantification will be completed; parameter value
estimates will be provided for all LoSim function boxes listed
in Appendix B tables. Parameter calibration will begin after
Simulator Model 0 becomes available, but only as time permits.

(3) Model 0 will be demonstrated, but no formal test (e.g., FQT) is
planned.

(4) Model definition will be completed by general refinement of the

LoSim logic (Figure A-2). Also, the Process Flow Expansion

70

.

diagram (Figure A-3) and the Amplification Notes (Table A-2),

will be completed.

b. Prototype Model (MI)

(1) The specific capabilities to be included within Model 1 will be
selected and functionally specified.

(2) Process Flow Diagrams will be updated as necessary to reflect
the added capabilities.

(3) Estimated parameter values will be obtained for any functions
modified or added.

(4) The Simulator design will be updated to include the new
capabilities.

(5) The new capabilities will be implemented (coded, compiled,
integrated, etc.) to the extent that available resources permit.

8.3 OVERALL PLAN

A modest amount of effort has been devoted to outlining an overall
strawman plan for the development, pilot application, and installation of the
Process Model, including work in future years. This outline is presented in
Table 1, Outline of Strawman Software Acquisition Process Model Development
Plan. It needs more work to become a full-fledged plan, and essential
concurrence by all concerned organizations to become a viable one.
Nevertheless, we hope that the outline will help avert misunderstandings about
our goals, our approach, and the scope of our current effort. We also intend
it to help guide that effort, and believe that it should lead to more
realistic expectations and financial planning.

Our outline draws extensively on ideas contained in Sections 2 and 6 of
the 1 April 1979 draft AFSC Software Cost Estimation Working Group (SCEWG)
Research Management Plan (SCEWG79), prepared by Capt. J. A. Duquette,
ESD/ACCE, based on review of an earlier version by the ESD/SCEWG. However, we
have restructured and revised that plan's elements, and have rescheduled the
revised results, in preparing our plan outline.

The strawman plan outline has several prime characteristics, all of which
we deem essential to the Model's successful development and transition to
operational use. These characteristics are:

a. definition, development, and trial application of several successive,
modest, versions of the Model;

b. incorporating experience with earlier versions into later versions;

c. strong emphasis on written application guidance and expert support of
Model operation and maintenance; and

71

d. formal review and evaluation of application experience to assess
progress, to assure operational effectiveness, and to help guide new version
development.

Table 1 lists the major tasks and first-level subtasks of the strawman
plan outline, including tasks already accomplished as well as the FY 80 tasks
described in Section 8.2. It also incorporates a rudimentary schedule for
each. The plan outline has been devised around four potential Software
Acquisition Process Model versions. Table 2, Tentative Later Process Model
Version Characteristics, presents a number of characteristics of the last
three versions, as we currently envision them. In addition, each version will
undergo improvement during its pilot application, and the third and fourth
versions will change during their routine (production) application.

A principal objective of the plan outline is useful application of the
Process Model at the earliest feasible time. Another gnal is assuring
adequate transfer of experience with early versions into the designs of their
successors. A third aim is to define versions of modest difficulty, each of
which can be developed with reasonable effort and risk, and each of which can
replace its predecessor smoothly.

The versions identified in Table 2 and the schedule in Table 1 are based
on planning to date. More thorough description of each subtask may reveal
additional opportunities for overlapping tasks, but may also show additional
constraints on overlapping. After general agreement is reached on this
outline or a revised one, a plan based on it should be developed, as follows.
The outline should be expanded, the subtasks should be described, and their
mutual information requirements should be elicited. The results should be
checked for precedence conflicts. The individual subtasks' resource
requirements should be estimated, and an improved plan (including a revised
schedule) should be prepared, consistent with available resources. This plan
should be completed and agreed on before firm commitments are made about FY 81
work, and updated at roughly six-month intervals thereafter.

Subsequent paragraphs contain preliminary information about selected
portions of the plan.

8.3.1 Feasibility Analysis

We completed this task in November 1978. Its chief product is an
internal report entitled "ESD Software Acquisition Process Model Concept &
Feasibility."

8.3.2 Demonstration Model (MO)

This is the first of the four Model versions. Its development should
validate the Simulator design concepts (as described herein), establish basic
capability to which desired improvements may be added, and provide valuable
simulation experience.

72

a. MO Definition

This work is completed. This report outlines Model O's structure and
capabilities.

b. MO Development

This task is currently in process. This report describes the results to
date and our plans for its completion.

8.3.3 Prototype Model (MI)

a. Ml Definition and Preliminary Design

The functions planned for inclusion in MI are indicated in Table 2. A
preliminary design for implementing these functions will lead to a decision
during FY 80 as to which functions are appropriate for MI.

b. MI Development

We plan to start this task in FY 80. The effort will consist of the
following subtasks:

(1) Detailed Design

We see this as a conventional computer program design subtask.
However, we plan only informal design reviews, since a computer
program of this modest magnitude needs no elaborate PDR & CDR.

(2) Coding & Checkout

As usual, this will cover coding, compilation, and unit testing.

(3) Informal Test & Integration

This subtask will cover integration and testing of Simulator
Model 1 as a whole. For a program of this modest size and
difficulty, developed under close customer observation, we plan
no formal testing (i.e., PQT or FQT).

(4) Preparation of Products

Selected output reports, related inputs, code listings, and a
set of computer program operating instructions will be prepared
and delivered. The computer program source code will also be
delivered on magnetic tape. The computer program operating
instructions will explain the mechanics of specifying the
program's inputs and running it.

73

c. Ml Pilot Application Preparation

Preparation for the initial pilot application entails the following:

(1) helping ESD to locate existing ESD acquisition programs which
might benefit from trial Prototype Process Model application;
the effort will include preparation and frequent delivery of a
briefing explaining why a P0 should consider Prototype Process
Model use;

(2) helping ESD to negotiate a mutually satisfactory arrangement for
an initial pilot application with one of these acquisition
program POs;

(3) developing a technical methodology for effective PO use of the
Prototype Process Model; and

(4) together with pilot PO personnel, developing operating
instructions for use of the Model.

d. MI Pilot Application

This task covers the application itself, and the required support. Such
support includes: (1) helping PO personnel to define Model data and logic
changes; (2) Simulator execution, maintenance, and modification during pilot
application; (3) interpreting results to PO personnel; and (4) collecting data
for pilot application evaluation.

8.3.4 Initial Operational Model (M2)

This is the first of the four proposed Process Model versions (see Table
2) for which we propose routine operational use at ESD. We plan definition,
development, pilot application preparation, and pilot application for the
Initial Operational Model. These subtasks are analogous to the corresponding
Prototype Process Model (Ml) subtasks. The chief differences now apparent
result from the increased scope and sophistication of the Initial Operational
Model, the reduced effort at basic definition needed, plus additional effort
that will be required to improve the accuracy of parameter estimates and to
incorporate other improvements suggested by Prototype Process Model pilot
application experience.

8.3.5 Assessment of Initial Pilot Applications

We plan a several-month effort in early FY 82 to review the Prototype
Process Model pilot application experience, and early experience with the
Initial Operational Model, to assure that continuation of the effort into
routine operation is worthwhile. Assuming a positive outcome, the assessment
should also yield recommendations that influence such routine operation.

74

8.3.6 Routine ESD Model Operation (M2 & M3)

To support routine use at ESD of the Initial Operational Model (M2) andlater the Extended Model (M3) we plan the following tasks.

a. Planning, Training & Support

A permanent organization or organizations, responsible for coordinating

SARE data collection, Process Model application, and analysis of related

information must be established. We expect to devote modest effort over an
extensive time period to plan this organization's establishment, and to
support it technically.

b. Model Operation at ESD

Support of PO applications is the work envisioned under this subtask.

c. Model Maintenance & Modification

Trouble-shooting of the Simulator and its documentation, plus development
and installation of more extensive future modifications, are the work planned.

d. Transition to Other Users

Assuming successful use of the Model at ESD, its use at other AFSC
Product Divisions is expected. The effort planned for this subtask is support
for such transition. This support will include installation at other sites
(including site adaptation), and help with initial applications at these
sites.

8.3.7 Extended Model (M3)

This is the fourth and last Model version included in the plan (see
Table 2). The effort foreseen to develop and install M3 is analogous to the
Initial Operational Model subtasks. The principal difference now foreseen is
additional work needed to replace the Initial Operational Model in routine
use, which will probably mean an extended period of parallel operation.

8.3.8 Model Review and Evaluation

This is planned as a formal evaluation of the entire Model development
and application effort by an outside group. Our planned effort comprises
support of the evaluation group.

75

cn!

voorI
n 0 n

Go r-

4.) c

V ~ N0
o 41

V

0 Q

4)

,0 U)

0; "-44
0l

0 04 0 0
U 04 0 ~ . 04 0 r

40 -1 4 0

1.4 64 S-~ ,4 E4~u
10 0 W 0H'

'4- .0 =i 0. La0'G 1. 0

P-4 004 0 0' " 00
0n w-.- X- rq.- 0 -4 00 4J 00CO-Hr-

cWoO0 mm w(ua U41 m- 0 owv
...4 Uut " U U" I= - 9 90 u tj

4-1 4

00w.44)F40C 0L 0 ,4 0 ~4 >
1 4 rq 4 0 a- - 4 4J .J0JU3

r4 4) V0O - V 00.-4~4 r4 0 0
40 4- -4-4*. 4 -4 -4 r -4>r4 -

4V J Q 0J~4 44 4 A4 W4 -I-0-4) 3 1 W 0"4 E- W
41 U) 00.0 m - .)UO ~.o.

76

> 4 W .

0) .0.0 0 a u>1a"
w3 >4U(U0

14 0.4.- (U 14c a06c

wU "43 4J-I.-- In 41
40 -4 4) W.. k 0- 0t

o34. U U (4 4.4 a3 0
43 .0 '. = 00 U)4 0 -i -, ta

ca U ,4 (4. 44 3 .44.4CV(0>
W a44 M 43 u -H W V .. 44

-4 l30(0 .. 0.. 0. a L.0 040 =

(A ..1 44 0 0 4143r. 4.
o x 0.4 S, .40 44 x-. 0.=-4

0 0. u U. 0 to-~Z 4.1 Lao .~.
43 c 3 C33:24 ~ 04. 3(3.

(444 - 2 .4 300 4((4 W4 24 4.0
U~t e 4 -4 ~ (4 4 ~ 434.0 -(. N.4-

0

(4~ -4 0 .

rm 06 u.~ .4 .1 (U 04 c
x -CU rz44 . 0 m. = 0.4c (4

(U Z 0..4 4.44 X:43 3 (n *.40

0440 N 4044(> .44 04

(U ca4 . 0 44 4 43 (

.0 (4 0U 0(U 4U3t u-(. >4
a~ ~ wo - 344.2mO...U 0

0 J -4 0 .44 4 30
0~~~~ ~~~ ~~~ >443. 4 U . 4- (30 4 (3)

w4 (4 w 4. 3UU4 443 0 U (
4.4 31 433 (4. O 3

u. U>O (-0 w 0

4-~~~~~ 0: m(.(04 0N 0 =4 34 4

(U (.. E.4V -42(030 -- ~ U4- 30to ~

w4 C Ujr 4

z. 4.4 w 1 0 (
0 .4 43 S43

m . 43 >0 0 . W m ('A m
(4~~~~c 0 (n0 4 (4. 4(

4-) 4 (U43 4 44. ~ . -7

SECTION 9

CONCLUSIONS AND
RECOMMENDATIONS

Effective system planning requires a reasonably accurate means for
estimating the cost and schedule for embedded software. This need became
manifest about twenty years ago when the first Air Force "L" systems were
being acquired. Since then, system technology has greatly improved, enabling
the feasibility of ever more complex systems. Software estimating and
management, however, remain rough empirical procedures with outputs that lead
more to surprises than to sound planning.

While the various analytic estimating techniques currently being used do
yield estimates, they have not been able to forecast or account for the wide
deviations in results experienced on different but "similar" systems. Because
of this situation, work was begun on a software estimating technique that is
based on a simulation of the acquisition/development process rather than just
on the product being acquired. Though more complex than the analytical
methods, this approach appeared to offer the prospect of better results.

Now, 21 months later, the project is closer to realization and the
prospect remains bright. The software acquisition process has been modeled, a
Simulator design has been formulated and partially implemented, and a plan has
been drawn up for bringing the Simulator into operational use. Based on the
problems encountered and surmounted, and the results achieved, the Simulator
concept has grown in feasibility and still offers the prospect of improved
software cost and schedule forecasting.

In addition, during work on the Software Acquisition Process Model, it
became evident that the device had inherent capability as a general purpose
acquisition management tool. Beyond cost and schedule estimating, it could
aid in project planning, contractor proposal evaluation, contractor
monitoring, and personnel training, as well as in research into the process of
acquiring and developing embedded software.

The results of inaccurate software estimates and dimly illuminated
management decisions are manifest in the high cost of acquiring embedded
software. Considering the magnitude of annual Air Force expenditures on such
software, improvement in the software acquisition process provides
considerable potential for cost savings. The Process Model described in this
report offers such an opportunity. Since the project cost is small, its cost
saving potential large, and the project risk modest, continuation of this work
is prudent and recommended.

78

APPENDIX A

PROCESS FLOW DIAGRAMS
AND AMPLIFICATION NOTES

This appendix incorporates and explains the detailed diagrams of the
software-related activities and decisions typical during the Full-Scale
Development Phase of the Major System Acquisition Life Cycle defined in
AFR 800-2. As such, it presents the results to date of the Process Definition
work, introduced in Section 3 and discussed further in Section 4.

First, Figure A-i, Flow Diagram Notation, explains the flow diagram
conventions. Table A-i, Index to Figure A-2 Connectors and Box Numbers, is
provided to help locate specific information in the multi-page LoSim flow
diagrams. Figure A-2, Software Acquisition Process Model LoSim Activity Flow,
depicts in 200+ connected activities and decisions, the software-related
functions of the entire Full-Scale Development Phase. Figure A-3, Process
Flow Expansion, shows selected portions of this process in detail suitable for
training or the development of parameter estimates. Table A-2, Process Flow
Diagram Amplification Notes, provides comments on selected activities and
decisions depicted in Figures A-2 and A-3. Finally, the abbreviations used in
this appendix are listed and defined.

79

The Process Flow Diagrams contain three basic types of element; Function
Boxes, Auxiliary Elements and Lines of Flow, as follows:

1. FUNCTION BOXES

1.1 Shapes

In HiSim and higher-level Process Flow Diagrams,
rectangles are used to represent all actions;
these diagrams include none of the other
Function Box shapes, shown below. In LoSim and
Expansion Process Flow Diagrams, however,
rectangles (i.e., Rectangular Activity Boxes)
are used only to represent mainstream activities
(i.e., activities of principal importance).

Trapezoidal Activity Boxes are used to represeut
support activities in LoSim and Process Flow
Expansion Diagrams. Both mainstream and support
activities consume time and resources.

In LoSim and Process Flow Expansion Diagrams, a
hexagon depicts a Special Event Box. A Special
Event provides for special actions such as
changing a frequency, duration, or condition, at
a designated point in the process logic.

In LoSim and Process Flow Expansion Diagrams, a
rhomboid depicts each Decision Box. A Decision
Box is any procedure which selects between two
mutually exclusive exits. By convention, these
include no time or resource expenditures, which
are included instead in preceding activities.

1.2 Labels

Each Function Box has a label, printed just above the box. In the HiSim
diagram each label is a one- or two-digit number. In the LoSim diagram, each
HiSim box may be represented as a network of several boxes; thus, each LoSim
box label is normally the corresponding HiSim box label suffixed by a letter.
Similarly, each Process Flow Expansion box label is normally the corresponding
LoSim box label, suffixed by a distinguishing integer.

Figure A-i. Flow Diagram Notation

80

1.3 Features

Each box may contain several field designators, identified by corner
positions within the box as shown by letters X, Y, Z and C, as follows:

X - indicates Doer; i.e., the organization responsible for the function:
A = government (e.g., Air Force), C = Contractor, B = Both.

Y - indicates Integration Group: D = Developmental Integration Group
(DIG), T = Test Integration Group (TIG), Blank = the function is not
divided into Groups.

Z - indicates the level at which the work is conducted: 1 = System, 2 =
Segment, 3 = CPCI, 4 = CPC (Computer Program Component), 5 = lower
level module.

C - is present on any Decision Box used as a counter.

2. AUXILIARY ELEMENTS

2.1 Shapes

Connector Used to indicate a specific point in the process
flow. May be used to show connection between
physically separated elements on flow diagrams.
(A given label must apply uniquely to only one
input point in the process flow).

Terminus Used to mark a start or end point of a process
When labelled "fin" it marks the end of the
specific flow path.

Flag Used to annotate flow diagrams.

EDo for
each DIG

Figure A-1. Flow Diagram Notation (Continued)

81

3. LINES OF FLOW

The lines of flow have arrows to indicate direction, plus three
alphabetic designators, as follows:

N/F/S

PStart Logic

A = Logical "AND" relationships (the input is necessary
to start the box).

R = Logical "OR" relationship (any one of these will
start a box; inputs of other types may also be
necessary, however).

S = Start immediately (this input by itself will start
a box).

DProgression Mode (PM)

F = Normal forward progression

I = Iterative progression

C = Continue progression mode (F or I) of predecessor.

bGroup Number Controller

N = No group involvement

D = Increment DIG number

T = Increment TIG number

G = Retain predecessor's Group number.

Figure A-I. Flow Diagram Notation (Concluded)

82

00 0-

N4 C4 N ~ -- 0 00

N' tt0 I0

'T 0

u~ c- 00 0I Go\-a c

w w 'z c 0 (N -* n.
0

Z ~ Q. OO00 ~ -
1(N

C:~ u-- ' 0

0
Q 0D

I z

(N C' I

0

a, co -nc

a. L CN 3

.4 t-

. rC- w 0 N- '0

4,4J 4)
0 ~4 =~l

0 m~ 40 x 0 u x t
c 0- = -. 0f

83

00 :

C.a CA

- 1.

o CzCj
.0 0 4

.0 0 A -C w4

x gi z m t

0

1- 0 . 0 41

44 U.-

- > 104 - r4-t

-H0t

a E. $4

4.1 4)
4.40)

C'4
1 964

84

P4

4 v4

~~0 r-4 A

U)4

CL.
2 9 .

A. E

C, ,4

U) A)

'-44

U-)U

.40

A. -~85

ClI

4

(A 1

0

cc 4

0 0

"q CI

0

864

0

Uz

00 D- 0

aoosok

I.3.

0 CZ0

on~
ODw

L'-I

z P4

CA a

144
4'

U ~44 (Ii0 Ai
87 4 n m

4 A

0 0

-z z

th 4 II4 '
4

44.4
0

0 A.

p...

c41-

88n

N1

Vi 0

~z

hiA
00

f-. 0

Cu

0 C
z 4

0 h

91.~ m z4 V0

.3.

c89

44 W.J 4

44 4Y t

Ng >~- Cs.Cs

LA

44 ca

'n 4J0

a a

.54

U>
mw

m 4-4

Cits

90

49 w

g u
go -

o0 c

z U

0

n 04

C, z

CA~

~ 44

4 0G

U 0 -
C44

u 4
-J 0)

o ~ ~IA
cnorzw

4 91

z

'-44 T -

C44

14I

>1~ z C b

-C cu

A~ 9 9

'M.

to)
m a D C

0

$Z4

z (V9v

toJ
14v

000

04

0 0

UU

0 wOO
-H Co

N4 u
H 4

Cm INWL C A 5 4-

C4 w W ":3 60 O

-J0 4U

U) WU

u 50

Go~ ODw O

93

>4 36

j ;

0p

I

*41

"I c "

K~~ -aE4

948

- -
low-

-i (4 mm-4V-

I3 0 > m

3 0

'00

z - I a .404

U 33

0 0S

41

3 r4

H 14z
100

I- a, 0 41

43 44J41

-CC

z 4

0 F.

'kC

95

Wt.4

01 ca

611

CA~ I _

I -I U-

0. cn

4 m RI0 a

iis

001

0 I 4

050

04 W

414.

13U.

'-404

to rig.
r 4c

97'.

02.

'NC

0 0

U..
4

en 00

gapa

~11

98

ad Zo

001

H v4

'A 0

>
~0 4

I I -

logl

99I

0

~tCA
fn

1000

Its -C $4

U0

inC~; - 0s

CM I- Z

'N))
1001

oV - o

I"I.

Kw

Table A-2

PROCESS FLOW DIAGRAM AMPLIFICATION NOTES

Note Fig. A-2 Fig. A-3
No. Sht. Box Sht. Box Amplification Notes

2A 1 2A3 The assignment of key personnel at the
2A7 initiation of a project is generally a slow

process. Each person selected for a new
project usually has an existing assignment
which must be transitioned to a successor; the
successor may also need to transition his job
to another, etc. Advance planning by the
contractor helps in the personnel selection
process but the uncertainties associated with
the award and timing on this contract (as well
as on other contracts bid) make startup a
traumatic event that gets under way slowly.

2 1 4A 1 4A3 Just the concept and general approach to the
Developmental Integration Group (DIG) (see
Section 4.1.5) plan are established here to
provide a basis for the status monitoring and
management plans. The grouping of specific
CPCs into DIGs is established in Box 6F. (See
Note 11).

Note that both 4A3 and 4S support activity 4C3
(CPDP preparation) even though the direct
connection isn't shown on the LoSim diagram.
This feedback is shown indirectly via the 4S to
4A to 4C connection; this arrangement will
satisfy the precedence needs of the Simulator.

3 1 4C 1 4C1 The System Engineering Management Plan (SEMP),
the Test and Evaluation Management Plan (TEMP),
and the Computer Resources Integrated Support
Plan (CRISP) are normally prepared during the
system's Validation Phase. These plans usually
need updating in the light of the current
contract and contractor. This box covers only
those portions concerned with software.

4 1 4C 1 4C3 The Computer Program Development Plan (CPDP)
is generally addressed in the contractor's
proposal. This activity covers the rewrite and
extension necessary before this plan can be put
into effect contractually.

102

Ai, k

Table A-2 (Continued)

Note Fig. A-2 Fig. A-3
No. Sht. Box Sht. Box Amplification Notes

5 1 4S 1 4S Per Section 4.1.4 this activity provides for the
most general case where the program and test
support facilities are not identical, even
though some portions of the hardware may be
shared for both uses.

6 1 60A 2 60Al- A need to build support software will significantly
60A7 increase this activity's elapsed time over that

otherwise required. Parameter values for this
activity must be selected to reflect the actual
(or expected) contractual situation.

7 1 62A 2 62AIl Any non-trivial special (i.e., not
62A12 specified) equipment or software which is to
62A13 be used to support Qualification Testing must
62A17 be evaluated to assure that it is valid for its
62A18 intended use. As examples, a facility may be
62A19 needed to emulate a non-available interfacing

component (hardware or software) or to produce
radar returns representing a flying aircraft,
etc. Any deliverable test support component
would not be processed in these boxes because
its validity would be established in the tests
associated with its acceptance by the
government.

8 1 4G The management plans are frequently resolved at
4J the first full-scale overall Program Management
4L Review (PMR), as shown. Instead, they can be
4M treated at a separate meeting (if they become

urgent issues), or without a meeting (by mail
and phone) if not controversial; the process
parameters can be adjusted to cover any
expected case.

9 1 66B PMRs are generally conducted on a periodic
66D basis (e.g., monthly or bimonthly) throughout
66F the entire contractual period. They are shown

9 80D here because the preparation and conduct
activities consume considerable manpower on an
intermittent basis and thereby can impact the
development process. Note that a Special Event
Box (80D) will cause the PMR activity to stop
at the start of PCA.

103

Table A-2 (Continued)

Note Fig. A-2 Fig. A-3
No. Sht. Pox Sht. Box Amplification Notes

2 6A 3 All The design and evaluation activities shown are
61) representative of those conducted on many projects;

they are not intended as an all inclusive set.
In general, the overall design is sampled at a
moderate depth while design areas that are
perceived to be risky, difficult, or innovative
are given emphasis.

11 2 6F Here the specific Developmental Integration Groups
(see Section 4.1.5) comprising the CPCI are
defined.

12 2 6G The design activities conducted prior to thesc
6H boxes are global in that they include the overall CPCI
61 at a fairly gross level. They establish that the

overall system concept is feasible and can
accord with space, timing, and other
restrictions. In these boxes, the capabilities
to be provided in each DIG (see Section 4.1.5)
are designed to a depth necessary to show that
the approach for each snecific function is
feasible.

13 2 61 4 8A1- Once the contractor establishes the adequacy
8A9 of his design (in box 61) he must document it

(using Product Specification format) and submit
it for government review and approval. This is
shown via connectors LE and LC to Boxes 20A to
20E on Sheet 8 of Figure A-2.

14 2 6f Even when the PDR results (in Box 8C) are satisfactory,
8C there are generally a number of specific deficiency
12A areas noted during the extensive review. These are
12J documented by the contractor in the design review

minutes as items which he agrees to correct;
Box 6M makes provision for these corrections.
The references to Boxes 12A and 12J indicate
that this note also applies to the CDR results.

15 2 8E Each of the Decision Boxes branches on a count rather
10F than on the basis of probability. If the design at
12E these points has not been completed for all the DIGs,
12H this causes the design process to repeat, but on

10G4

Table A-2 (Concluded)

Note Fig. A-2 Fig. A-3
No. Sht. Box Sht. Box Amplification Notes

18H the next DIG; e.g., at Box 6G. Note that regard-
18P less of the counter, further design on the current
42B DIG continues; e.g., by transfer to connector D.
42L
44K
46N

48D

105

Appendix A Abbreviations

AF Air Force

ADEQ Adequate

CCB Configuration Control Board

CCI&C Code, Compile, Integrate & Check

CDR Critical Design Review

CDRL Contract Data Requirements List

CI Configuration Item

CPC Computer Program Component

CPCI Computer Program Configuration Item

CPDP Computer Program Development Plan

CPT&E Computer Program Test & Evaluation

CRISP Computer Resources Integrated Support Plan

CRIT Critical

CTL Control

DEMO Demonstrate

DESCR Description

DEV Develop

DIG Developmental Integration Group

DISCREP Discrepancies

DIST Distribute

DOC Document

DSGN Design

ECP Engineering Change Proposal

EVAL Evaluate

106

Appendix A Abbreviations (Continued)

FACIL Facility

FCA Functional Configuration Audit

FIN End of this process flow diagram path

FQT Formal Qualification Testing

FUNC Functional

HIERARCH Hierarchial

HWARE Hardware

I&C Integration and Checkout

IMPL Implementation

INFO Information

INTEG Integration

LVL Level

MAINT Maintain

MGMT Management

MGR Manager

MISC Miscellaneous

ORG Organization

PCA Physical Configuration Audit

PCKG Packaging

PDR Preliminary Design Review

PRGM Program

PHR Program Management Review

PREP Prepare

107

Appendix A Abbreviations (Concluded)

PROB Problem

PROC Procedure

PROD Product

PROG Programming

PROJ Project

REQT Requirement

REVAL Reevaluation

REVW Review

SCHED Schedule

SEMP System Engineering Management Plan

"WARE Software

SPEC Specification

SPRT Support

STD Standard

SYS System

SZ Size

TECH Technical

TEMP Test and Evaluation Master Plan

TIG Test Integration Group

108

APPENDIX B

MODEL DEFINITION DATA

This appendix incorporates and describes the tables that define the
software acquisition process logic and parameter values to the Simulator.
These tables are input via a terminal to computer files and may easily be
altered. As explained in Section 6.4, the Simulator reads these files,
reformats the tables, and interprets the revisions to develop simulation
results. Within broadly-defined limits the tables may be modified, to
represent more or less detail, differences in process logic, or revised
parameter values. Without needing revision itself, the Simulator will
interpret the modified tables and develop corresponding simulation results.

Table B-i, Software Acquisition Process Model Network Linkage, is a
tabular representation of the entire LoSim Process Flow Diagram (Figure A-2).
Table B-2, Software Acquisition Process Model Activity Box Parameter Data,
contains the manning and duration parameter value estimates thus far developed
for the activities depicted in the LoSim Process Flow Diagram. Table B-3,
Software Acquisition Process Model Decision Box Parameter Data, contains
estimates of the decision outcome probabilities for all LoSim Flow Diagram
Decision Boxes except counters. Table B-4, Software Acquisition Process Model
Counter & Special Event Box Parameter Data, contains the LoSim Flow Diagram
counter Decision Box limits and Special Event Box parameters so far defined.
The latter are mainly Milestone identifiers.

The columns of these tables, and the values that the data in each column
may legitimately contain, are explained below.

I. TABLE B-1

Table B-1 represents the Process Model network. It must contain an entry
for each box in the Process Flow Diagram that it represents. There is
currently an entry in Table B-1 for every box in the LoSim Process Flow
Diagram (Figure A-2).

1.1 Box Data

a. Box ID: This is the box's label (see Figure A-1).

b. Box Type:

A = a mainstream Activity Box.

B = a branching box (i.e., a normal Decision Box).

C = a counter Decision Box. This is similar to a type B box, except
that the exit is determined by whether an incrementing counter
has reached it's limit; see Table A-2, Note 15.

109

E = a Special Event Box. This provides for special actions at
designated locations in the process flow. These include
displaying Milestones, resetting counters, and changing parameter
values, and provide for as yet undefined future needs.

H = a helping box (i.e., a support Activity Box). See Figure A-1.

c. Box Lns: This is the number of Table B-1 lines used to define this
box. This field is included as a programming convenience. Multiple lines are
needed to accommodate multiple predecessors or successors within the table
format.

1.2 General Data

a. Doer: This defines the agency or agencies assigned to perform the
activity or to make the decision:

A = Government (e.g., Air Force)

C = Contractor

B = Both.

b. Lvl: This defines the system component level at which the activity
is performed or the decision is made, as listed below. Note that a box at any
level may also be divided (or clustered) to conform with Integration Group
assignments, described subsequently.

I = System level

2 = Segment level (see Section 4.1.2)

3 = CPCI level

4 = CPC level

5 = Computer Program Routi.e level, or lower.

c. Box Grp: This defines the box's membership (if any) within an
Integration Group (see Section 4.'.5).

D = Developmental Integration Group (DIG)

T = Test Integration Group (TIG)

N = No Integration Group.

d. Subnet: A user may assign the box to any one of up to 15 Subnetworks
by entering a number in the range 1-15 in this column. The Simulator will
develop aggregate timing and cost data for each Subnetwork as well as the
entire network.

110

1.3 Predecessors

a. Quan: This specifies the quantity of the boxes' immediate
predecessors. The data required for the first or only predecessor are
specified in the "Predecessors" columns on this line. If a box has more than
one predecessor, the data for its second and any subsequent predecessors are
stored in corresponding columns of successive lines. The "Quan" column of
these successive lines is blank.

b. Box: This is the Box ID (see paragraph 1.la) of the predecessor.

c. Exit: This is the predecessor box's exit used to reach this box:

Y = "Yes" exit

N = "No" exit

S = Single exit.

d. Grp: The box's Group Control parameter, used to maintain Group
(i.e., DIG or TIG) number continuity and incrementation during network flow.

N = No group involvement

D = Increment DIG Number

T = Increment TIG number

G = Retain predecessor's group number.

e. PH: A parameter used to indicate Progression Mode during box-to-box
progression. See Figure A-i.

F = Normal forward progression

I = Iterative progression

C = Continue Progression Mode of predecessor.

f. Strt: Defines the combination of predecessors that must finish
before this box may start.

A = "AND" relationship. This predecessor's completion is a necessary
but not a sufficient condition for starting the box.

R = "OR" relationship. Completion of only one type R predecessor is
necessary to start the box. Predecessors of other types, if
specified, are also required.

S = Start immediately. This predecessor's completion by itself is
sufficient to start this box.

111

Note: If a box has no predecessor (e.g., Box 2A) all of its entry's

predecessor fields are zero filled.

1.4 Successors

a. Qnys: This specifies the quantity of the box's "Yes" exit (or single
exit) immediate successors.

b. Qnn: This specifies the quantity of the box's "No" exit immediate
successors.

c. Ysbx: "Yes" successor Box ID. If a box has more than one "Yes"
successor, their box IDs are stated in successive lines in this column.

d. Nbx: "No" successor Box ID. If a box has more than one "No"
successor, their box IDs are stated in successive lines in this column. Note
that Special Event Boxes may use the Nbx column to list the IDs of remote
boxes which are targeted for change.

2. TABLE B-2

Table B-2 contains the parameter data for each Activity Box (box types A
& H) in Table B-1. Every Activity Box must have a Table B-2 entry.
Tables B-3 & B-4 contain the parameter data for the other box types.

2.1 Box Data

a. Box ID: This is the box's label, which must be identical to its
Table B-i Box ID (see paragraph 1.la).

b. Box Type: This must be the same as the Table B-i entry's Box Type
(see paragraph 1.1b).

c. Box Grp: Identical to the Table B-i entry's Box Grp (see paragraph
1.2c).

2.2 Manpower

Manpower is subdivided into five categories of work for contractor
personnel, and three for government personnel, as explained below. Note that
management personnel are not assigned to specific activities. Instead,
manpower and dollar costs representing a given management structure will be
sustained for the project as a whole, or for designated parts of it.
Management personnel effort is not shown for specific boxes even if the work
is largely done by such persons.

112

The table contains a pair of columns for each manpower category; i.e.:

a. Contractor

Sys = System engineers and analysts

Dsgn = Designers (junior and senior)

Prgm = Computer programmers

Test = Software test engineers

Sprt = Support personnel; e.g., writers, operators,
maintenance persons.

b. Government

Dev = Developing Command (e.g. ESD)

Usr = Using Command (e.g. TAC)

Sprt = Supporting Command (e.g., AFLC).

For each manpower category the first column contains the (integral)
number of personnel of that type estimated necessary to complete the activity.
The second column allows assignment to be on a part-time basis; i.e., by
showing the proportion of their time (in tenths) these personnel apply to this
task. Here blank = full time.

c. Iterate Factor:

Many tasks may need to be repeated because the results achieved on the
first pass were not adequate to meet subsequent needs or review criteria.
Since the work required on subsequent passes usually involves fewer persons,
these three columns each contain a factor (from 0 to 10) representing the
number of tenths by which the original number of persons in each of the
manpower columns (as specified for the first pass) must be multiplied to
obtain the manpower needed respectively on the second, third, and fourth or
later iteration of the activity.

2.3 Durations

a. Days: The first duration column contains the mean duration of the
activity, in work days.

b. It Fctr: The next three columns each contain a factor (from 0 to 10)
representing the number of tenths of the first iteration's duration (i.e.,
days column) required to complete the second, third, and fourth or later
iteration, respectively.

113

2.4 Wait

This field may contain a waiting time (in days) before the activity may
begin. The action may begin only after the wait period has completed; the
Wait itself starts after all predecessor conditions are satisfied. If blank,
no Wait is required.

2.5 Notes

This column refers to the notes listed within Table A-2, Process Flow
Diagram Amplification Notes.

3. TABLE B-3

Each Table B-3 entry contains the parameter data for a normal Decision
Box (box type B) with an entry in Table B-i. Every normal Decision Box in
Table B-i must be represented by a Table B-4 entry.

3.1 Box Data

These fields' definitions are given in paragraphs 2.1a-c.

3.2 Yes Exit Probability

These four columns contain the probabilities (each multiplied by I00) of
taking the "Yes" exit on the first four iterative passes through the Decision
Box; see paragraph 2.2c. The leftmost column provides first pass probability.
The rightmost column probability will be used repeatedly, if the box is
iterated more often than four times.

3.3 Wait

See paragraph 2.4.

3.4 Notes

See paragraph 2.5.

4. TABLE B-4

This table contains an entry for each counter Decision Box (type C) and
each Special Event Box defined in Table B-i. Every such box must be
represented by a Table B-4 entry.

4.1 Box Data

These fields' functions are given in paragraph 2.1a-c.

114

4.2 Funct

Three types of function have thus far been allocated to Special Event
Boxes:

M = Milestone. The contents of the Event Label column (a Milestone
name) will be output on schedule reports for each Special Event
Box entered. Where "(DTN.NO)" is included in the message the
Integration Group number at the time of entry into the box will
be printed as part of this output.

R = Reset. The stored data and status of the boxes listed in the
Table B-1 Nbx column will be reset for any Integration Group (DIG
or TIG) in effect as of the time the box was entered.

P = Parameter modification. The parameters given in the Parameter
column will replace the existing values for the boxes listed in
the Table B-1 Nbx column.

4.3 Event Label

This contains the characters to be output as the Milestone name for a
Milestone-type Special Event Box.

4.4 Parameter

This column identifies the parameter which is to be changed by a reset

(type R) or parameter modification (type P) Special Event.

4.5 Notes

See paragraph 2.5.

115

Ic. =w wo l

cn >4 Lf Lfl r O* 0 'I '0O O' I4,

Sal

0 0

-00

0) I 1

Q x 0 rn 2 ZW&4wz &0 >Z4CJJa z 3c n 4

0A0

m I) C) *4 "4C 4 'r) V

0

4.))

1-4 C4e C4 i

~ ~ 1. 2 2 222 22 2 22 0
an- 1

4)w

-4 116

comG 00 0%00 ON0 0o 0 q

u~ cc0 -4 0 -4 '40 0 .4CN 0 r-4 0 0 1-4

N 0 4 -4 -4 C4 F" w-i -4 N 4 - - -

I44Q w~C C1 44 UA 4 ;4 14u2Cu wI WCOCI W11 4 P4

ta 0

414

0

%C 0 o c0 co' %0000 %0 %DN'NOO0O 000 a N 0 04 ItN
I4 is C4 1-4 V4 1 -4 r"- -4 -IN

I-

* 3

mc

r-

> cn (C1 en (" M 1 M' Cfn' (Y) (Vn cn1 M~ m~ m

u 0 Q go m -C 4 0 Q u QU u U Q 00

CI V- C.4N r- C4 N P-1 r-* V-e4 N N N4 en)

A S 4 tj U 4 4u ow w 14 4 c

a 0'0o %o c c oco 0 0 0 N

117

P" -4 -0

o cn C4 47N % %0 -* Go00 %O 0 co co coco c ao %ao
W2~ 4 - 0% C'4 r, V- -4 1- -4 -4 r-i4 r- as -4
U2

V) 0 a
O2

Q N2

P4 04 eL4 44 r 4 F-W 4 P4 44 W W- k4W WW ;1

4 I z .$4ztp nzWEn WWWr
0 0

U 4

4.h4

CA I
4) 4 0 C-4C 14 C1P4 4 C1 4 O - - -.-
-4 I
A a Y

1 0

4n N N4 0' - 4 C-4 N4 (' 4 C14 -- cn-

GO 00 aoa

.011-

co~ co00 c

.- 4 4 -1e

-4 4 -4 -4 -4j -4 -4 - -4 1-4 C

,4,
41 x W' 040 0 0ZWW 0 0 0 4> - Z z r nZZ> 0

04 10- 4- 10- - 44- - - --. , -4 C4 C4

cc co-4-4- -4 -1 4-4 -44 4 C Z 4 ~ ~ 4

CY

0n Z.4 ~ O . O DC~ O

C.)

w $4 w =\ 0 m0 04 0-.10w-t1

GoI4~0 ww ww w ,*-4 - - -
V- VI " - . 4 (4 N C

.0119

00~~~~1 C4Cl a C (0

o 0 C4 4 %0 c 0 0000 C4 0 0 0 0 C44D C*4 CIC C C4 C4 4 C 4 0
00 >4 -- 4 , C'00 00000 00 c 4 '4444* *4 ITI474 S- O -4444 LM

Cl)

rJ)

I coa

I t9 C1 0

-, 0 z- C.z zz zzzz E"000
4) W)

04f
VI -C C) 4E-~ 4zCW "0 ~ 4C z -I UW uw

*0 C4 %10 c-4 cO~ 0 00 0000 40 C C N " J Ci4
-4 M 00 %I4 -4 r"C*4 4444 4444444s * t4 44-
I

4) I c@ - -4 0J CN 04. r4-4 14 - ('1Y -4,4- - '

E 4

I ri)
IU,

26 91 z 2 z Z 22222 E-4 E-4 4 - E-4 - E-

> mf 14 -4 -44-4-4 Mw M nc nc

4,,
I 0 4c Q. U.. L) go00CL) u g CC -4C J 400 a

C4 -4 Ln c4 C~4 -4 -- 4-4- "4 . -4P-44-4 rq4 -4-

00 L) I! 4 4 4 0 4 C. 00 -C -C.L)

L -C u 44 00 Pq
* 44 Ln %0 Go 0) 000040 N4 04 C4 N N e

- N (N (N -N %T 4 %t4 %I 4T %TIt4

120

CAk 0 04 -Cu 9N 04

as.4 44444

g0 0. 11~4 4 IJ W A 00 4 w c

%00 000 %a 00 0- - %0 % %0

4 0' 4eq .

-0

>4 04 'a3 za>4-U 4 >54 0 5 g U 4& CAI z 4U

_ 0 r. 02 00 0 Q k., w 0 A 0A
0) %DN NN - 40r 0% 0% 0

0 go u uU

C4 - 0

I 2 4 40 L)'U w -C 4 4Ua. -C m4 k

0 '.ON NNN44-*44CD O.0"0 ' '

- I 44 4C''.0-4*4 4 4444 4*121

E- -C 39A - - 4 C W C a

o Cj2 hNO' 00CNI-ON N 00 00 0 0 -T 4 NC4C'N
C4 It It C4 P- % Ifn wlif ULn U AUL L nLnL n n U L nin

u a00 0 - 00 0-40 0 coo

0 -4 r--- 4- -*. '4

to -.h En -c ,cCnC rnw- n0w

I 4 ;U - " r.&

04

CA, 0 i

0

0 %a LZ00 N4 14 N 0-00 000 4"

o q
E-4

.4 00 -~-C4 t- -n -t4 C4 r" f -t Aff

N C4
4)~ n Lo L~ A' In km~ 4-e- LA- fY

'-4 122

I co eq C4

o 04 C 4 4 JC4ON Cl4 C4C 4 C J4 N 4 N C4 NN'NN JNN."0
co >4 m 4nt Ln O% mA L &ULfl mn L nA n ntA In 4nm~ AC c &MLMA

Ccc

0 -. 0 0 - 00 0- 00I 000.- 000 00 - 4

1 41 (A < -C- .1 .9c -cc - .-m -c -C -C - -

0 w

1J 0 4NCOC* 4C *
1 0 i nL n i na nL AL nL nL nL nL nW nL nI nL

a C C b ro r-I CO 4OCO C-4 r" V-1 r'.4C COCO4OU-4 ~CO4 COC

CY

In Z

c) z cu z z' Clz m
1

.zz(W ('1z .4C' .- wO.1 44

an -C 4c4< -C4 - C-

IQ123

E- E-
a -1 e-*I-

I 4 4 -4 4 ?O D *

t0 Ln)Lff))L L n U-1 t ~ A f L Ln Lfn CN o - % 0 o 00
cjn

-40 0 cc-0 C0 0 0

I 4.J) U

44 :Z L P j1- A

0 C4

u a4

en IT \ IT - c. -T -r -T - -4 -It 11- 4 1 N

.0

z zzz zzzz;F zz z z

-M -4 C4 -- -4 N V-4I

At 0 cc -CJ go wU

ITI -4 -4 -4 -4 -4 -4 -

124

T4 00 0 00%0
%0 0o

p o

En

w ~ -;T-11 ~ ;4 w ;4.. 0-.- u -u* f& -Ww44

4) En

* x co5 0 L w4 .-4 w n z a- wUCJ 4r >zai m w rz cAC
0

ccc

Cfl~~~fl en en c4E U ~n M ~ E

N 4n 04 %C 0 cc I-4

~-' I -O "J n .t.O0'0 cJO 40 0 .040 "J.125-d

En 0 4 o 4u w .

o CA~ 0 0 0'. N c% CO 14 NN0 00 C1 N eq 4 04C-4
cIn >4 0o Go m% Go 0% 0000000000 co 00 000c00000c
c0

0 0 - 0 0-~ 000 0 0 r4

* n r1.4 4 .

* 1 co-c.cc t C)V 1 c-

k4 P4r0P.4P 444P 4r44 4;44 4 4W "P4;4;qwk

Ew mm9zzzz.MZM=Z zz2z

(U

.4- \4 0 00 \\ NOD C 0 2 0co 0 M00)00

* n Z

4Je en en~ c, C~ N -4- -- 4 N (

4c 04 0

I 126

Co C4

~ 0 C Y 0 04 LOC 00.1 W &4 >O~~ CY')4Po C4 C 1 C4C4C 1 N N eq 4 0 04 04N N

U 4 0 0 Coco00 0 0 00 0000 000%4
U

0 4 - -- 0- 0000 0 -4000 04

- 4.)

* 4

* CA

V to

0)

411C

CJ 4

".44

4) 0.

- I CA

41 a £1

1-4

5-4)

w. LD .4 sZw 00wE.

1271

C4 c n 0 a C4 4 4

enC N.11 41nNN n0

c- M " "~q an r4c nr 4NM m w n

Ij ~ -N $1N %mt nt n I 4c4.tC4 n 4.q an mnkm

70 u
-MlM0 int m m nacen n n % e nO ' a U1411 Iv)amen

I-

4j

c- - ~ - -e

"Mmmm mC m 1.0 6

==ou wamo coa-on ma

12

0 M

(IIn NN 00 In 0 Go F- - - nL aL n oL cL

a Ou-0 1

I Go

Com =c - mI lzw

-0

C4o cN

129

k ,a,

'D~~j aDnfnf

u3~ an .o 04 00 0 a-n 4n-,

tn-
a09 I ~ ~ ~ A'

cq.

41 11 - '4 OOOliO'a

OF'a - -

* c*1.

*. La a c M2 9MzM2

-C -C- C- C C- c c4c4c4

aw g L0f 0 0 a

I in0 NNN 4 4C
al in 61 AanILv " AL n% li M

a130

L-A-6

IA W

- '-n

Ob.. 40 .t0'
Ln -

-c0

a a
I J .

4j~
0a

aq M 04

* a an

-C4 ! C A CM -4c -4
9 1"NAXIII V s 0 X a
6Ai - m n Mi

* a~ U131

M0

0In

4 1

am P-. a 6 A m n94tw9w

00 a - 44" - 4(

M I0mG 00 o 0 0G 0W 0* 0c oG o0 o0

I I 132

I

:1
I

2
0I-

,4J
* ~J ~
* 4I0
I I.. ~J
* IJCJ

* .-

* -I-
I I~
I I 0..
* I
II
SE-
* 2

; :~
*0

I,
- I S~

I IE~
0
o I

c.,I I

~ I
I 0..

- I
.0 I I
*~ I I

~-.

'a-
SCE

'0
* U
II
* I
* 52
* I
* I
* .0
II
II
II
II
* I
I I (12
* I
* -U2

-- 0..
I~ 222ZZ22222

.0 O~O~OC'C'O'0

-- a~0%0~o.OO'0%

133

-, - r

Table B-3

Software Acquisition Process Model
Decision Box Parameter Data

I------ ox --------i
ID TYPE GROUP I----- YES EXIT PROB ------- WAIT NOTES

4G B N 80 100 100 100 8
4L B N 80 90 90 90 8

6E B N 20 60 80 100
61 B D 70 90 100 100 12
6P B N 50 0 0 0 13

8C B D 90 100 100 100 14

10E B D 20 50 80 95
103 B D 20 50 80 95

12C B D 80 90 90 95
12G B D 90 90 90 100

18F B D 5 0 0 0
181 B D 100 80 40 20
18K B D 80 60 40 25
18L B D 15 0 0 0

20E B N 70 90 95 100

24E B D 70 90 95 100

42E B T 40 60 75 90

441H B T 5 25 50 75

46F B T 90 100 100 100
46L B T 20 40 60 90
46T B N 80 90 100 95

50E B N 50 70 90 100

52E B N 80 90 100 100
52J B N 75 95 100 100
52W B N 90 100 100 100

54E B N 10 25 50 75
54K B N 20 40 75 90
54M B N 75 00 00 00
54N B N 80 00 00 00
54S B N 60 90 95 100

134

Table B-3 (Concluded)

I------ BOX -------- I
ID TYPE GROUP I----- YES EXIT PROB ------- WAIT NOTES

54V B N 40 70 95 100

66F B N 0 0 0 0 9

70E B N 50 70 90 100

74C B N 40 60 70 95

80J B N 65 85 95 100

82C B N 75 90 100 100
82T B N 75 80 90 100
82Y B N 75 90 95 100

96E B N 60 80 95 100
96F B N 75 75 75 75
96J B N 65 85 95 100
96L B N 60 60 60 60
96N B N 75 50 25 25
96Q B N 50 50 50 . 50
96T B N 65 85 90 90
96W B N 75 60 50 25

135

Table B-4

Software Acquisition Process Model
Counter & Special Event Box Parameter Data

------BOX -------I
ID TYPE GRP FUNCT EVENT LABEL PARAMETER NOTES

6L E D 11 PDR (DTN.NO)

8E C D 15

10F C D 15

12E C D 15
12F E D 11 CDR (DTN.NO)
12H C D 15

18H1 C D 15
18P C D 15
18R E D 11 CCI&C (DTN.NO)

42B C T 15
42L C T 15

44D E N H DRY RUN -END
44K C T 15

46M1 E T R
46N C T 15
46W E N M FQT -END

48D C T 15

52F E N 11 FCA- START

80D E N P PYlOO0

80F E N M PCA- START

136

APPENDIX C

RATIONALE FOR PROCESS
MODEL DEVELOPMENT

This appendix repeats attachment 2 of MITRE letter to ESD/TOIT D75-173,
"Proposed FY 79 Project 5720 Tasks in Software Resource and Cost Prediction",
17 July 1978, because the letter is unavailable to most readers of this
report. The attachment, entitled "Advantages of Software Acquisition Process
Model Development," is as follows.

FY 79 MITRE work to date strongly indicates substantial potential
benefits from developing and applying in selected ESD-managed acquisition
programs a simulation model of the software acquisition process. The type of
software acquisition process model considered would represent explicitly
(e.g., in flowchart form) the different Program Office (PO) and contractor
activities that ESD-managed software acquisition entails, and how these
different activities interact. It would represent activity sequences,
repetitions of such sequences, alternatives, concurrency, and delays (e.g.,
due to waits for essential inputs). In this respect the model would somewhat
resemble PERT, but without PERT's restrictions on loop representation, etc.

Besides this process logic, the model would also accept, wherever
appropriate, a definite parameter value or distribution of values for each
activity's resource requirements (e.g., manpower, computer time), elapsed
time, and dollar cost. The software acquisition process model would also
accept parameter values representing the probabilities of transition among the
different activities; for example, the chances of 1, 2, or more document
review cycles could be represented. (An initial set of these parameter values
would be included so users would need to change only the values pertinent to
each use).

Early in an acquisition program's life cycle a flowchart of the
acquisition program's planned software-related activities would be developed,
and coded in a computer simulation language. The parameter values associated
with the program's activities and transitions among activities would also be
estimated and put into the model. These flowcharts and local estimates would
be prepared for, and reviewed by, the Program Manager (PM), based on current
acquisition program plans. The model thus defined would then undergo computer
simulation to develop initial predictions of the acquisition program's overall
software-related requirements, schedules, and dollar costs, in total, by
phase, and by function. In addition, the simulation would summarize delays,
by function, and other indicators of potential problems. The software
acquisition process model logic could be modified, the parameter values
altered, and the simulation program rerun, to explore the effects of
alternative policies and the overall estimates' sensitivities to particular
local estimates.

Such early use of a software acquisition process model would force early
definition of concrete plans, and early development of specific local

137

estimates. This alone would be a major benefit of using a software
acquisition process model in an acquisition program. While the process model
concept mandates no specific level of detail, and in fact allows that level to
be varied at will, the effort necessary to develop, and to review at any
reasonable level, acquisition program logic, local estimates, and simulation
results, would be sure to expose some vagueness, ambiguity, and oversight,
which if then corrected would prevent serious later problems.

In addition, software acquisition process model simulation results would
generally be more accurate than estimates derived by more general methods
(e.g., using typical parametric cost estimation models), because the former
would reflect the specific acquisition program's plans and policies. Where
desired, the simulation program could also develop envelopes of values arouad
these results, as measures of their uncertainty.

Perhaps most important, the simulation results would be credible, because
they would be based on flowcharts and local estimates understood and approved
by PO management. The software acquisition process model logic could normally
be verified by flowchart inspection. The local estimates would in some cases
be verifiable immediately as relatively simple facts, or as assumptions; in
other cases verification would require investigation, but usually would be
relatively straightforward because it would involve a local variable. In
contrast, typical parametric models available today are mysterious because
they represent no well-defined mechanisms, and unverifiable (at desirable
levels of accuracy) because appropriate data for their rigorous statistical
testing is unavailable. Only a systematic data collection effort (like the
planned ESD Software Data Reporting System), applied over many years, can
substantially mitigate this problem.

As an acquisition program evolves, actual resource expenditures, elapsed
times, and dollars spent become known, and the actual (vs. planned) logic of
past activities becomes clear. Based on such experience a PO changes its
acquisition program plans, and updates its predictions of future activities'
costs. In an acquisition program application, the software acquisition
process model would be revised at convenient intervals to reflect past event
logic, actual expenditures, actual elapsed times, revised plans, and new
estimates based on all of the above. After each such set of changes, the
revised acquisition process model would provide the PO with a series of
overall predictions, generally of increasing accuracy. Each of these would be
based on the best experience then available, and on then current plans.

Like the PO's original version of the software acquisition process model,
any subsequent version could be altered and simulated to explore the effects
of proposed policy changes and different local estimates. In this way, the
model could become a powerful aid to source selection, provided the
acquisition program's RFP(s) directed the offerors to provide the necessary
input in their proposals, and that the source selection schedule allowed
enough time for the necessary model modifications, parameterization, and
simulation runs. To help in source selection, the PO's current version of the
software acquisition process model would be modified and simulated (where
possible) to reflect each offeror's plans for software-related work, and
parameterized to reflect his resource, elapsed time, and dollar cost

138

estimates. These activities should reveal omissions, inconsistencies, and
unexpected implications that current proposal review methods rarely catch.
The model would also be modified, parameterized, and simulated to reflect the
Government's best assessment of the activities, resources, elapsed times, and
dollar costs, necessary to do the RFP-specified work, based on the
Government's understanding of each offeror's proposed approach, modified for
completeness, consistency, and realism. The results of this modification and
simulation would considerably improve the realism of contract negotiations by
sensitizing the Government negotiators to proposal flaws now often overlooked.
For similar reasons, Source Selection Board recommendations would be improved.

After source selection, the PO's then standard model version would be
altered to reflect the selected contractor's development approach. It would
subsequently be updated, as indicated earlier, to reflect actual contractor
performance, and used to predict the effects of proposed changes in contract
scope, contractor organization, and contractor resource allocation. For
example, a contractor's justification of his estimates to implement a proposed
contract change (e.g., an ECP) could be subject to verification by PO software
acquisition process model use. As a result, excessive ECP implementation cost
estimates, now a common problem, would often be avoided.

Besides these specific acquisition program applications, a software
acquisition process model could greatly aid investigation of the quantitative
effects on resource requirements, elapsed times and dollar costs of varying
the program development or maintenance environment (e.g., by the use of
structured programming, improved compilers, or other development tools), of
imposed schedules, of computer program type and complexity, and of many other
factors. In this type of use a software acquisition process model would be
altered or parameterized to reflect each factor or appropriate combination
of factors. The model would then be simulated, the effects noted, and the
causes investigated. Multiple runs using different estimates could establish
the sensitivity of the overall process, or of important subprocesses (e.g.,
detailed design, coding, test and integration), to different assumed values of
the factor(s) under investigation. In effect, this kind of model application
would provide a controlled experimental environment not achievable in
practice. It could be supplemented by limited actual experiments to obtain
realistic parameter values.

Probably the most important near term use of this kind would apply the
software acquisition process model to help revise and redefine, in FY 79 and
later, the prototype set of software-related cost reporting elements defined
under a FY 78 MITRE task. One basic objective of this work is to define a
minimum number of elements that nevertheless capture and distinguish all
important kinds of software-related resource expenditures, elapsed times, and
costs. The prototype element set definitions are being established in large
part as a result of a few persons' software development and software
acquisition management experience. While widespread critical review will
doubtless suggest many improvements, and while planned pilot application will
identify others, these activities could nevertheless overlook important
deficiencies.

139

Software acquisition process modeling could significantly help the
element redefinition process. As flowcharts of the principal kinds of
software-related activity are developed, and as estimates are prepared of the
individual activities and their transition probabilities, it often becomes
clear what activities should be grouped together, and what their approximate
relative magnitudes are. This has already occurred in some cases during our
preparation of sample software acquisition process flowcharts during the FY 78
model feasibility study. Definition of other groups of processes is expected
to yield further insights of this kind. Actual model simulation would be even
more effective. Since the software cost reporting elements should seldom be
changed once the Software Data Reporting System is widely applied, these
elements should be well defined and reasonably stable before then. In the
absence of a respectable data base (which the Software Cost Reporting SystL.n
is designed to collect), the software acquisition process model seems a very
promising aid to judgment and limited experience in defining the elements
effectively.

140

APPENDIX D

PARAMETER VALUE
CALIBRATION

This Appendix describes the numerical methods used to calibrate the
activity duration data, and provides the detailed results obtained.
Figure D-1, Activity Duration Calibration, shows the calibration procedures
applied to each unit sequence of the mainstream developmental activity for the
contract period up through Formal Qualification Testing (FQT). Figure D-2,
Activity Duration Calibration Summary, shows the sequential relationship
between the unit sequences and the consequent overall timing. Each of the
figures is further described below.

As shown in these figures, four different activity times were used or
developed. These are:

a. Initial value - the estimated elapsed time initially established.

b. Initial iterated value - the initial estimated time, which has been
lengthened to include the effect of iteration.

c. Calibrated value - the time assigned as a result of the calibration
procedure.

d. Calibrated iterated value - the calibrated time with the lengthening
effect of iteration added.

In Figure D-1 the overall process was divided into a contiguous set of
unit sequences. Boundaries between the sequences were selected to avoid (or
minimize) the interruption of any iteration loops. Each sequence was then
timed by following its flow paths in conformance with the Decision Box
probability (pY) data. This was done by assuming a sample of 100 runs during
which a count was kept of how many times each Activity Box (A-box) was entered
per each iteration count. This permitted the total time spent in each A-box
to be calculated. This is shown (per iteration) on the diagram. By dividing
the total time by the number of runs (i.e., 100), the "iterated" time for each
A-box was determined. Thus the most likely time to traverse each unit
sequence became the sum of the iterated times for the A-boxes which form the
unit sequence.

Figure D-2 shows the overall flow. Sheet 1 represents the workdays for
each sequence based on calibrated activity times (without iteration). The
number in parentheses represents the cumulative work days (based on the
longest path) for each sequence. Sheet 2 depicts the same kind of information
using the initial iterated times. The same information, but based on
calibrated iterated time, is shown in Figure 10 of the report proper.

141

0
-

'Q- 00

0
I q

c co lo -. F

0 0 0)

q_ ooj _ _ D 1 A04

r4
w wha

0 r-- '

142..

10I

C=

C f

co 0

Sol-- 0 e

1444

OD C4 0

-4E -

LPIN

40 rniijiC14

irl IN IIII

o-. 0 V

4I

e,.n

~~0

~00

0 M4

fn N

A+

- 4 ." - 143

z0

Go

~~C4

~~0

0 0 C

0

ONN 4

$4

Goo

.4 . .. 4

-. ~r t.C + fl

C.. 0...-
do .

+ 0 !C -

1444

0

0
*44

-r4

rN4

145h

N 0

0

4 D 0

z

-At0 4 ,-41

00 OD 44

-~f 0 -a.,.

41 -ri

L-z11 C.)

44
>41

o0 N

u00 co

co~

00

I146

C-4 gn

> 4

00

0 -

0A 0 0

C-44

4 147

0 cli 4 0__ _ _ _ _ _

4 4

Z~ -D

0 SID

4c N 4.

IT '

a' KK 0n
I-44 00in

4 Do

4o, 44 C- w

004

1484

N

0 E0

4*4 0

a.a

'E-4

N U .N

-a-
.. t CO4% -P4'

z-4N

C., U.

a 14

F -V C-4
- 4 J

- 1-4

-~~ > 4 1U

0- - .4 -H .* J*4

rn 0

in~ 14 V~

00

00 . I
en~~(0- 14 W W toI

w1491

E-4 4

C 0.
000

1-4 t2
442 b

40% E-- -AZ

A4.

L4-I

c14 0

., 4jC.
'.4 0, > ~ 4 0

in -4~

4"j

C.) w 044
w a a) 44J

(3 44

to 00

04 4

'-- 14 0.

r4 (4w

1.50

APPENDIX E

SIMULATION PROGRAM LISTING EXTRACTS

This appendix provides extracts from the compilation listing of the
simulation computer program thus far completed.

The computer printouts provided herein comprise the following three
portions:

a. The portions of the Global Data Base prepared to date are defined
within the program Preamble. This appears on pages 1-6 of the listing; these
page numbers appear on the top right corner of each page.

b. The Data Input Processor routines prepared to date are included on
listing pages 11-34. Brief descriptions and definitions of local variables
are provided within each routine. Most of the cross reference listings that
normally follow each routine were excised to reduce the size of this appendix.

c. The remainder of the appendix shows the output obtained from a test
run of the program. Much of this output is for data checking, and will not be
included in the final program version.

151

a4 W*4 * 0 a

= .a. =.,-- a I*4 0 o, *4 a 1

S0 a a l " 1

&0 1- a4 am *4*44* U 0*

o ° ,, . *. ,,4* o.

a .o -m 0 6 ,*tSB

am a" s.o

1, o o4*4 S, a0 *4 0 .i

.0 a1* 0 O 4 44* U **

, o. 0 B -. -,U* * * ;*;
I.-0 0.11 V i a * .0

0 ;;;a MO4 "M - 0 a 4 S 4.U M .
- 0 *4.1 -**4 " s 00 :. a-s .* . 1O SB*4

,1" .1 0 I.m a*4., l *4 *4* *4 * 4 P-il m *4*40i)q~. U

l 0 " . a 4* s" : a a 'ta a 4 a a ..
D 0* -m U 3a4 a'40,0 . a. * * l me* 4 0

G.- so: : - . ;. - . - - °
W e a M * *4 0*4 * 0 0 *4 m

Now' :;. wgw: ::::::::::::::::::am

02: Owtf U. IV "4 a4 *4 1. a.*.*4

0* U B a 4* ur 140 0 *4 0 9* 4 * * 0 4 4 4 * *
** 1. 1.0* M u . .4 *4 U. - a 4 "coca a .. a g O~IN *4*0**

.0 *4 1'"04* *4 0"* 0 4 0 n* 11 . 0 04 ***4 44

0*4* 0. l I",44* Io 0 4 01m a a . .4 .4 . .B

0*M.1 'j 0*44 ao IM **** *4444 * a *44a4*0

*4*40~ 0*C444 0 U 0444 E 44 *4 a *4 4
o-4 *4 *4 *4 Tf** 4 *. * 4* . I 4* =* um 0 0 1 000 *4 ****5* 44W44 u *0* W 40

000 a4 m a

4 04 a I4 I 0. I in a e
*4 *4 *4 :;: C.*

*4 **4 * *4 4 - - 45

on :W a4 04 *4*4 a 4N .1.

V, *. a 4 uCo . 4 *

,,4

S* -2

0w

000
.. o *. S .
a in .. 4 0 04

0L in B

0 S. I NW4 00 0N 4a. -a a. *4* a.. m.* .40 w

o o 4 : : 0 : N .10 0*
.4 0 *4 no 4.. 004** 4. 4*

0 *4 4 0. 0 u 0*4 0 "4* a4* 0, a4* 6

uN aN uN Vo m 0a ON

;. .1 .1 1.0 .= 04o a 0

o~~~ u4 .1 *4 * 41 * 40 U****

% 0*4M 0 ON Km a *4* of-3*4* 4**.

- --- ** m 0 * U s*4*4o m --* 0*4*4

C, a m gm O. LL Me .a am C .ao mu ...~ *4 U4 . .* 404 a * *

4 :.0 -4*4 *4 * *4* *4 4*d4 *4*4 "- =. 0:"am4 -

a NN w0o w :If

NoN

**4b~ N:0 cr s.: orU at* 00a 000 *0*0 0*4

10 :1."1.

.4* 0* 0 :" ".cc:44 *44 0 *4 4* 44 *
a4* a4* 44 .4 *4 ** *44 "490* *4K 4 *4 a44

a. =44 ..* ... 44*4 a* us 4 * U * . *4*4*4
0~~: M4* I-. N. 044 1- 04. o-U mau *443 a A *4*

)V

*4 3.4 0 **4* *4**4 *4*44 3*4 .*4 *lb

Mon4 a4* *4 ** 44 .* 444 **44 * 44 04** **

6*44. *44 4 **4 *4* * m mp"um "56" NO a a4* & 4*

44*4*40 *4 *4 *4 .4 .4 a4** A'4*44 a~
0 4 4. 4 u 4 - - -4 *4 *4 a**4 0* 4 *4

:a ma* "a "a "m *4 "a *4*4. a44. m"44* so ma*444
0 444** 0ta 0so 44 **4 *U4m. 4 4 444

0**44* "A* Me* *4410 44 4.44 *** 4,44** 4 ** .*

*4*444*4*4~~~~~~~~ft f2: 44* 444 40*4044 * * 44**

*44 4 4 4 4 4 440 440*4 u 4 4* 1534**

a3 a M 0 4

n o AS 0 0001-0a0a0M3. 'M s-UG

w3 0 0. in3 .33
S. - - 0 .3C CCCC fl.3~I.

.. s .M 0o o .; 0 cc . 0 a 1 u a
0 EU 0, :0 .mum "" .30U55g.333 . 1
"h.3 . .3 0 0. Lu3i....Si.0 . 3.

0.1.330.11 . .3 ..1.... .3 . .3 .53.3..3 1 ..3 .. 0.3

0.1 3 43 . 4. . . .3 . LI 0.31a. am M6..5 . 4443...3.1. I .
.3.33453~~~~o a33 . 33333.. 43.........03 . 3.

.33 0. .3.00. 00OOOOCOOCOO M:. :8.= .3.3

O 80.3 ..3 1 .3.3.3.3...3.....0

533.3 .3 1)15030.00. 0 U .30.
U.3UO.3 53~~~~~04 4.0 0 333 - - - - - - . 0 .3 5

S. 53 a35 0I I5 03 0 .%A Is6 F. 53 O.
06 35 .. 01...... 3 . * * . * * 51 3 5 .

.3 5 1 3.5...0.63 .344..44.3..343 . 0 533 3
160 9.8.0.S 3 01143431.11144 3 33 .

.3~~~a m30 =0 503 0 2 . 3455155555533 5 3 . 4
.3 53 0353 S 3 s3 U 33.53353 - 14

5. 05. 3 1.3.O 3.*1 40. 4.. 3 .
ul 33.. a 3. U 41U3.50. . 55.1555550333 .. 0 be

u f3 O . 3 5 43 0 4 43 3 55....5....... 3101

U.Uu04 0~.0 h.0 0 515.400055.. 0 ..

0 ~ ~ ~ ~ 0 N3 . 3.. J333 ..

SUS N 14 36 SU UUU OS 3 * 6U US S6U .3 1 1543.

a. 1. a a a. a 1a a... a .at A a. $a a 6. 9b .
m B hi b. -0 04. C, i 06. 08. ai Ci hi hi 9. 0

V, hih a, aA 0 a a a a

a 00 ao- a m ow m0 MO a
hi No -- = - N N 096 hi * 0.0 - 0.0 -0. - N5. - 060- 90
00 " M * 0 'A hihhi hi - i b h . i hi I, hA hl i hi b h i vi 6.

P 4 hi.h.a a .a. a . a a1 . 'a a a a

w agN no~h m him hi hi hic h hi0 hiOm hi hm hi : hi h hm h
O~6 hiih ZO hi hi h h i h

ga .i hih. "O .m #A 0 h i h 0 hi a Ui a hi

.. of% a* hi oun ums mu mum umu u u
hi hihi *him- m a "00:iO Ohio0 zhiO0 OhiO0 Ohi0 Nohia OhiO

00.* M&MMa 0 Wa hb. a~u a :W amu afu aNO a:0 a
hi. hih hi" h a*&h i* 0 0 00 0 "1 0 . e- 0 .h .0 .

ls 00 .hiihh Cm 9.im m - U U m i m h i h i h
hi ih 0, dm hih h-0 m.OC O -hi c 0.0-i 0"0h O .h .- P m.h .m

aim a ma M in Mhui Uih h~i Ui~i Uih h~i uih
*'O~ ON MOi Mmi 0ihi aih 0ihi 0ihi mmmm2 m

hi ~ ~ ~ ~ ~ ~ :: "44hhais .O eo momo onmo mem mmo meO
ai .4.4 :a hi-a hii hh iiiii hhhii hhhh iiii hhiii hhhh ii i h
hi M"h S"*i h i iaih hmi hhuh hui mih hsi siii h
0 . :*: *U I lu 0 hi: : .: . I .h 1 m CDhih Oh0h CD~h ah~h Omh MMi ah 0

hihhih hiC hi, a,~h Ohi1h *1~h OM1 h Ohi0. a,.. 0% 0 1,0%0 1,a 0 1 0 0 0

m co a ah om a a

m~ ~ hiig Ua sm m .0..a 04 *bfm d6iS~ msm m 4 m4h hi

a mm hhi hiM hiM mfa mam mam mam mam mam m m m

15

z .4 3c it a4 . 4 .
ma 4 4 'kso 0 .4 1.4 . A 24 0. . a. IWm 6. 4 1. *.1- C -
- a a wam9 0 1a. a a. - dig

b. 16 H 0. I- I. w
m a .2 a ba 6. C . 01 o 0 0 0b a .. a-

am Om C 0 01 0 0 a 0"I: We . Z 0 aama a
maav A IA 3 ma4 .a ma m. 3 N aI. ma

- 1 0 l. .ta . ma. ma. CA ma0 a m aa = m~m

ma ~ ~ ~ ~ U U. mau wa: mam ma a. m. m. m. z a am m a

ml. maam l .Zl ~a ~ -- -a4 -a. a 0 AA !f 4L 1^

L oaai a n an tw a a a.. aa man aO ma.- v ma!I-a
ma aa. M ma. ma. a S ma. ma. . S.aBe

mama Z Z ZN ZN 30 N N Z P *m a156am

~8 0 4
WS a

f.g lIM a 6. '" a .

dC6 "MVI 0 a 0 3 a 0 M . a
4M m " UM o 0 Q 1 = 0 ,

W& 46 0 w Uu 9

4a "o i 6C ftU 0 a 0 4 0
a vs0 4 . I. a b U0 0

I.~ £3 - 04 to 4
9U aM me 4 . 0 4

o14 00 0 4400 1 0.

U. 404 :W IL.U

44V 0UUh U&4:00.00 ono

U: " 6*.00 0* .4 .U UU t. 4

4001 U Zo oU A4 4 I Dm1 0.

C,~~.
44omsmm .

4~~" .5 U 4 &1 3£ U

.4 .4 . .f .1 . .5 .1 .; 5

41 .4.4 a a 4 4 4 4
*, 4 4 I- m 44 U44 UU

4 1 NA VI U R U ag 0 44a4
4; a0

U b- s a 00aIS P 4 z"UU UUUU U4IU UiR Uc 00-116

.0 sf 40 ac"! ": 1.4 . .. 00

.1 10 9 wc 1*61116" - 4 i'.57

UI -

.

0 a L

1' 11 0
SLs

ac
it Z 0*4*oQ *

.4 .- 1

U~ N wNUn

10 0 6. .4 : .

O f a t a m -*40

so .N nd

011 a

. -. 1U .

4100000N
N .4 * N *4 *40400:aN:

* * NN 44 6.6. N158

0

oc 0

-v 10 ft~

la 052 1

MM MU "a

L2 MU a5 M . H

0 amN -m a
wl a 06 0 1. :0

.4 N 1-30 a Nf 0
-~ " V.h

"0 o- b. 0 0 MI 4 1: a, N
ne. 1, 45 Mo . . s " 0 Nla

M 6m 0 6. M. 0 N N u M a a ft
I" 00 012 1- MU~ 1-s a a u

64 dl 0 A UN 0 I 5 *

fi 1. 50 NS abS S

c Z 0 a.N 0: 0.0.4 1-. 1- 6 N
Do a b- ad *d S. a M -

we V, bo 6% as- 3 .5

": a doS a aU A. *4 so a

.4 0 MU 55 N * C N 0

S S S S UN NS1- NN -159

*0

I'm.

.. de

a. 14.

a A 0M ft .4u an I

a C .8 " a 0

a N 6
am ON N 1a

E2a a, ItN
a a k I N 4 9.00. 'A 6,6 ft a

1 . * M %6 .4 0 -1N.-. N0 . 0 ft

Cu : :" *Ob . . US 6 . 1

00 - 0 0 a
No a NO Mo 6.1 60 4. lo

a N 6. a 2
u

N M Nl N I"

NM 4. N 160

£3C C

-3 b. . .Wa ha

ha Cb aa .

-~0 Oa - 0 a .

CmCa. a. ao

doC a a.

ha .W ea U a
.JM a.a. ha I

Of. Ca. 0. ha

.Aa 0.0 a W ham .
ha a Ls 0 Ci 0

now OW ha.&tuA
0C a mas - hap haha0 =

@..a. ha 0,a a-hso.=
h a h. a ham U

C4 a ha Id dl
ha haM 46 CM ha 0a~ C 'M0 9 A m Sm f

ai a.. . 0. Noa ah a
Waa M aa I-

aum 0 0 . a .. .a . .

a .m.lo .am B .a

ar a da ha

hahaha~ a h 161

IcI

66 MRa
n. hiI .".

a .. "W as &A

mo WI . .
- Mi 0h U00 IC" "60"d

o 4 .4h SOaMo b a. R,~mo N8 3k a IM . aaM1
-91 a~ .a W a-

C 0 i-h i W -ml..
o 06-1 I. *&

Co.. 04 Ift No. u . . a
hi~~ 0 mUa. *8

i-i- cI MO w 0
-~ ~ ~ 1 0, M 6 CW i: ft 0h LW 01 Na 61

.46 .8I. ini .0 636i
m mm do 94 . -a

9.05 6.48 a Si .81. " "a

o hi 0 0i 48a. O 0

Urn m iO .D r. 0i I. 68mor. 0 --

Co a Uh. a-a 0* ahi~h162h

40

as.0

8. NOn
a -aa

t am c
N- a :. :

La Z 0:. mM
a - 4. do16 a. .1 4 ! o

N.4 mom wl0
a -0 ONnN-. f

an A

A -1

04 1, so-

as am'. = 6.
o It a

m u

dOa 9N

* U 9. -

am *. aas'.163

00.

ma a

'A U hi M

@ ~ W M4 0 0, M

DA 0.0 0 . 60

uP.. 0 0

00 44 Zi 0

M P Mi hi i

U . U Zi 1. a a tI W
Mi in S

do 4 0~ 0 .1 A090 o
be0 4.0 0 o 01. 9

U. ft lc4. 4 p *
a0 S. -U "a 0 a .

OP. 0O~ b ;%M M

an Uww 0. Miw a i h
a Whhh m C. 0a 0 0 &O a = & m

U S 0 0 0 0 0 hi Via =U

'A alini ai M 0 3 i
(a a 4ii0.i a a - a.

a 6 hi .i . .i .m hi

u aC OO . .S . .i - h

O~i i hi 0 0.* hi hihi164C

$4

a..

0b

t - 0

*4

*4 64

" ,.. . .' - ,, . ..] nn I I* 4

Iaa

ha. 0 .0 0 a

Ha a 4 Mi I- w9u 9
ol "mh a - 9

S. Uha U .1 -N
n 0 aa 45 .a, m 1- 0 d6 M aA.

aS.I a n .

. I.. hao -

.eha~ ~ 0 0h

'a L, Sb C a6
% a,. .4C a 5

m o 0 1. 1 0

hC a " a. as
no In doS wnh

hM haS In. u a OS.
'a0 216 .6a a .ab

as a ". a 04-

a ha a N.6 01 a 5* sa
M m 6h.J.. ha adoSD

N . 5 a a a .S0h

ha V ha 4.4 6.5 5 5 06. 1166f

am

as. 0Vo

a. aIw
006S...

a

44 8

I..-

a -A 'A "
W6. a

16

0.0.

co 0M

f. a .

1 . 10 "

0m M0 u t a
M 10
10a a

WE1 mom a ,
u a .. I a aW

10 mom U

1. a 0 a 0
00 a M AM M d 1. 1 10 0
",'No0 0: U 0

1 0. 10 a
0 01

d 0 M i .

10f ft100 mm 30 a 1 a

* 010 = = 0168

0 a 1

V0a

- 0 0 hi

.40
b0 cc

0 . 0
0*4144 1

-a 0 4H 0 3
6.0U ath

.hi hi0

.4 U I v3

hS* N 0 0e
a. " =1

a ~ .. - hi " g3 . a d
33 m U I. a I 90a 4'

1. N . a3

w 03 0 Xi3 h
1A 140i hi .0. -0

- 3U*43 A 0o

* hiU - 0*4 169

SI

40
4.3

1. 0

0 N

*U .8334.3

-.4

16 .~ nS

o170

* a 1 a a

* a aa 33 ma a a a I.* . IWOa
33 a a 16 33 u au p,. 3 3 3

No- I as- a 11- a . a- Mo- a1.

So O 40 a 5o0 0 CO 0 a 0 450 ccO Do

1.0 U0 6.0 0 M 6.0 H

0. S . S . o- C. S.
ma. m. e. a. 6. me. c. m0. m. m s-

m.~~41 41. m. m .m. m .
Ilm m m a ma Ila Ila Il

ma mo ao sa 0 ma o ma 30 30 ma
mm. 33. m. 3m. 3 mm m. m. m . mm mm

34 34 H H H HL.3 Im tjm gum Ua6m 3 63 . .3 g

a o ft a c "I a 44 m a (4 ae v% a f

343 a43 eu m u. mt 3m n H33 .3 343A
3m# ams333 3 3 a am a m a

3H H 3 3H 34 H 4 34 3 3713

............ 3

a0 a0 0 a0

M a0 I. u3 8. a a a" aW aw t. 1a UMa

at 0- =I. a s- a- a am I. Mo. I0 33 o a 0 a a 0 s a a*. 33 am ma a a n a a 0 a

* c oa IDm l a a 3 a m

0 a 0 0 .O a 0 .00

A6 U. U s w . 5 5 CU

a no o- ao a a o a- Q a- a

mm mm - mm- -,% 64 6 4 4 m4 64 6

141 3 4 43

a.^h 4 -a a h -a h 6h a em

a ~o Dm a a a16 a a a a
34 04 01 03 34 4 0, 34 034 34 .103

3.. 64 4 a. 6 64 mm. 64 4 6 1726

55

aC S

Ct a

00.

173

Iwo

A11 410 144 0 11 4 0 141 0 4

"Wt.3 0 w MAU m4 tO 1 O h O 4 M 4

M01 Ni 01 13 N 014 hi 01. Wi 04mi01

01 0 14 u 10 L, 14 0 14 0 140

UO U MUCM UC i CMZCM SC

coo ON Na 0-. Ow,~

S~1 a

U 0 U

a a a

0 = 0 a

bU U "W u

A a
I- I

a w o d 0 N 01 0

a o

o 0
o a
= =a s

hi U 0
0

hi
-4 -

0 44U 0 U44 0 wo4 0 in44 0 W44 0 v44 444"M
4 44h m 4 " 0&1 "4 'Ab Vk b44 4a4 W4 4A VIM 4A V"haw4 MU 44 U 'A 6U 44 MU 44 m a aU .Mu
vs uu m u u CD uu 0 u u a uu u ut ha uuU

o 4 a.4a a 96 a a 4 a 96 IL 4

*0 .0 00. 0

=.4 44 43 0 ah.

a u u It .0 00 t-.0a u

0 44 0o

m ha a f 0M
I 0 'A

li U t U1t

ha Is haI d

0 0 . M4 0 h n 'A& I

44 r In

Ca

44 44175

WO - O IUt mo "0U U t ~Ut ~ ~ ~ ~ f -m Ut 4 t - t h - U -

so utu m utu Ci utut tt U~ tAt n Ut

M 00 M 00 M U00 U 0 U O U 0 U

-~6. O- ~t U M - o t a CM Ca-a6 in b C. S. C b . M. C

Or - 4N - 00 - ON -- 0,. -

a

V) aaauu 00
00 Ut4

Ut 00 010 "

Utn 0 I I
wt a

.4 an

.0 :1 a

'A.

a a

o C

a Ira

C7

-' in VtV.i

in, 0. Cu Sf O6 Ot S
u 0 uf~ u fnt u ini 0 ivt
hi ~ ~ ~ ~ 0 Mn 00 nVMi ih nih

U in MU i MU n MU in n
U~9 aiLU U i U i U

C U UC U UD U U t

u 4A -- *

u V.
o 0

Ut a

2i0 C hi0

" ahi a i hi $ a 1 C,

6, ~ ~ ~ ~ ~ h hi i V a a w A 6
in a u Min s u 1 .
*4 hi hi hi u u a

V. 0 V, a V

400.~C a .
a in in 46 L9 L 6 s s

. 0 a 0 4 14 1

ahia a a 0

5u 0 0 0 CC"

amI in

- hi h 177

o- - -- - -- - - - - -

17

APPENDIX F

EVENT NOTICE SPECIFICATION

1. INTRODUCTION

In the Simulation Conduct Processor the overall control of flow through
the network will be accomplished by the use of SIMSCRIPT 11.5 Event Notices to
control the box-to-box succession and to pass parameters. Two principal types
of Event Notice are required; each has its own parameter list and an
associated Event Routine to accomplish its tasks. These Event Types, listed
below, are fully specified subsequently. Other (and simpler) Event Types
(e.g., to end each simulation pass, to end simulation) will be specified
during FY 80.

Para Name Function

3.1 Flow The Flow Event Type provides a standard mechanism for
transitioning from a terminating box to iLts successor
boxes. A Flow Event is scheduled whenever a Box.Proc Event
Routine has completed its processing on the designated box.
When invoked, the Flow Event Routine performs termination
processing on the completed box and then performs the
following actions (as applicable) for each successor box:

- Determination of Group Number and Progression Mode;

- Predecessor Wait and Internal Wait processing;

- Predecessor Input Status updating; and

- Box.Proc Event Notice scheduling.

3.2 Box.Proc The Box.Proc Event Type initiates a common process for
simulating appropriate actions whenever a process function
box is ready to begin. The associated Even Routine
observes special override instructions, if any, then
determines the box type, and calls in the corresponding box
processor routine. When the box type specific actions have
been completed, a Flow Event is scheduled for the box.

2. DATA NOTATION

Each of the following Event Routine descriptions makes extensive
reference to the Global Data Base; this is defined (as yet incompletely) in
the coded program's Preamble, as listed in Appendix E. While the Event
Routines use the listing data names, additional notation is providd below to
convey the dimensionality of much of the data. This notation, which is
described below, is intended as an aid to the reader.

179

a. Each data name is shown within parenthesis.

b. All underlined data items are variables; all other items remain
constant during the simulation run.

c. Dimensional factors are indicated by small letters which immediately
follow the enclosed name, with commas being used as separators. The following
factors are used:

g = Integration Group number (DTN.No) dependency

i = iteration number (It.Ct) dependency

a = assigned manpower type; i.e., one of a vector of manpower
quantities needed for each task.

m = monthly accumulation of data

p = predecessor list membership

s = successor list membership.

d. Several examples illustrate this usage.

(CMN)a, g, i

"CMIN" contains the contractor's manpower assignment.

"a" indicates that each value belongs to a vector of manning levels
for the different assigned types of personnel.

"g" indicates that the duration may be different for each Integration
Group (DTN.No).

"i" indicates that the manpower level can change per iteration.

(IDUR)g,i

"IDUR" contains the duration assigned to an activity.

"g" indicates that the duration may be different for each Integration
Group (DTN.No).

"i" indicates that the duration is also dependent on the iteration
count (It.Ct) for the Group.

180

(PMN)p, g

"P1N" indicates the Predecessor Input Status for a box.

"p" indicates that each PMN is part of a vector which is ordered on
predecessor list position.

"g" indicates that Predecessor Input Status is maintained for each
Integration Group.

(FNETCM)am

"FNETCM" accumulates the contractor manpower expended on the Full

network.

"a" indicates that each value belongs to a vector per assigned
personnel type.

"im" indicates that the data are aggregated into monthly packets.

3. EVENT NOTICE & COMPUTER ROUTINE SPECIFICATION

3.1 Flow: Network Flow Effector

3.1.1 Purpose

The Flow Event Program performs all necessary box termination activities
for the designated box and then updates the Predecessor Input Status for each
box listed in the designated set of successors. It also performs Internal
Wait processing and Event Notice scheduling for each successor (if any) whose
predecessor input conditions have been met.

3.1.2 Event Scheduling

A Flow Event Notice is scheduled for a designated box'whenever the
Box.Proc Event Routine completes its processing of that box.

3.1.3 Actions

a. Box Termination Processing

(1) The following incoming parameters are saved as local variables:

(a) Box.Point becomes Own.Box: the pointer to the box to be
terminated.

(b) PMN becomes PMP: the Progression Mode of the predecessor
box.

(c) DTNN becomes PDTN: The Integration Group (i.e., DTN.No) of
the predecessor.

181

(d) XIT is used to select the designated list of successor

boxes (YList or NList).

(2) Own.Box Status (Box.Stat)g is set to zero (OFF).

(3) For Activity Boxes only, all previously allocated resources are
released. If an override was in effect for the box
(Flow.Override NEq 0), no resources were used; therefore no
resources need to be released. Otherwise, the following actions
are taken:

(a) Each element of the contractor manpower use vector
((CMN)a,i) is subtracted from the corresponding network
total ((CHNA)a).

(b) Each element of the government manpower use vector
((GMN)a,i) is subtracted from the corresponding network
total ((GNNA)a).

(c) Both of the above manpower use network total vectors are
saved in the sequential activity history file
(Rsr.History). This file, which will contain a timed
accounting of all resource transactions, will support the
creation of a resource utilization profile. In later
versions the impacts resulting from resource limitations
will be simulated.

b. Successor Box (S-Box) Processing. For each successor box (S-Box) in
the Own.Box successor list designated by input Event Notice parameter XIT, the
following actions are effected; if the successor list is empty, Flow returns
with no further action.

(1) The successor list Box.Pointer is used to gain access to the
following S-Box data: the Box.Type; its Group dependency (DTN);
and its list of predecessors (PList).

(2) The S-Box predecessor list (PList) is searched to find the
Own.Box entry (Plist Box.Pointer = Own.Box). The following data
are extracted:

(a) "p" - Own.Box position on the PList

(b) (SLA)p - Start Logic Assignment (see Appendix A-I)

(c) (Gp.Ctrl)p - Group Number (DTN.No) Controller (see Appendix
A-1)

(d) (PMA)p - Progression Mode Assignment (see Appendix A-I)

(e) "n" - Own.Box location on the Predecessor Input Status
Indicator vector.

182

(3) The Integration Group number (DTN.No) for this Predecessor Input
update is then obtained as follows:

(a) If Own.Box Group Dependency (DTN) is "none"(O), DTN.No is
set to 1; otherwise:

(b) The value of (Gp.Ctrl)p determines the Integration Group

number (DTN.No) as follows:

Gp.Ctrl DTN.No = Comment

0 1 (S-Box not group dependent)
1 PDTN+l (Increment DIG Count)
2 PDTN+1 (Increment TIG Count)
3 PDTN (Continue Pred DTN.No)

(4) The Progression Mode (PMN) is then determined using the S-Box
(PMA)p and the local (PMP); as follows:

PMA PMN = Comment

1 1 Forward Progression mandated
2 2 Iterative Progression mandated
3 PMP Continue Pred Progression

(5) If PMN = 2 (Iterative Progression) the action continues at
paragraph 3.1.3b(11), Iteration Count Actions.

(6) If PMN = 1 (Forward Progression) and SLA = 0 (Single Input
Start), the Predecessor Wait (Pr.Wt)g is set to zero, and the
action continues at paragraph 3.1.3b(11), Iteration Count
Actions.

(7) For all other Forward Progression cases, the Pred input status
is updated per paragraph 3.1.3b(8); the actions beyond this
point depend on the results of the Pred Input Status Check in
paragraph 3.1.3b(9).

(8) Pred Input Status Update

(a) If (PDNF)g = 0 (No prior Pred inputs yet received), set
(PDNF)g = 1 and set (Pr.Wt)g = TIME.V. (TIME.V is the
current Simulation Time.) The latter action saves the
starting time for the Predecessor Wait (Pr.Wt)g calculation
per paragraph 3.1.3b(10). The box is then placed in "Pred
Wait" status (Box.Stat = 1).

(b) If (SLA)p = 2 (Or-type input), set (PDNR)g = 1 (logical OR
input is satisfied). (Note: (PDNR)g may already = 1, in
which case it will remain 1).

(c) If (SLA)p = I (And-type input), Set (PDN)n = 1.

183

(9) Pred Input Status Dependent Actions

If all Pred Input Status conditions are found to be satisfied
(i.e., (PDNR)g = 1 and (PDN)n,g = 1 for all values of "n") for
an S-Box, the box is set up for activation per paragraphs 3.1.3b
(10) - (13); otherwise the program returns.

(10) Set Pred Wait (Pr.Wt) as follows:

(Pr.Wt)g = TIME.V - (Pr.Wt)g. (See paragraph 3.1.3b(8)(a)).

(11) Iteration Count (It.Ct)g Actions

(a) Step (It.Ct)g

(b) If (It.Ct)g remains within limits (i.e., is less than
It.Limit), continue with paragraph 3.1.3.b(12); otherwise
the following error message is output, and exit occurs.

IT.CT HIGH, (Box.ID); (DTN.No), (TIME.V)

(12) Internal Wait Processing

Internal Waits reflect inherent delays in starting a function
(e.g., the time between when a document is ready for submittal
until it is in the hands of the reviewers). It therefore
applies each time the box is entered. If no Internal Wait is
required (In.Wt = 0) the Event Notice time (TIME.A) is set to
"now" (TIME.V) and the action skips to paragraph 3.1.3b(13).
Otherwise:

(a) The Wait Duration (I.Wait) is set equal to the box
parameter In.Wt. In future Simulator versions, In.Wt will
be subjected to random perturbation before each use.

(b) The Wait is then added to the Cumulative Internal Wait;
(CIn.Wt)g = (Cln.Wt)g + (l.Wait).

(c) The box is put into Internal Wait status; (Box.Stat)g = 2.

(d) If the Progression Mode is Forward (PMN = 0) the Earliest
Start Time is set to now ((EST)g = TIME.V).

(e) The Event Notice time (TIME.A) is set to its value for the
end of the Wait (TIME.V + I.Wait).

(13) Event Notice Generation

A Box.Proc Event Notice is created and scheduled as follows:

(a) The Event Time (TIME.A) contains the value established in
paragraph 3.1.3b(12).

184

(b) The Box.Point designates the S-Box being processed (i.e.,
(Box.Pointer)s).

(c) The Integration Group number (DTNN) is set to the value of
DTN.No as obtained in paragraph 3.1.3b(3).

(d) The Progression Mode (PMN) contains the value obtained in
paragraph 3.1.3b(4).

3.1.4 Input Event Notice Parameters

a. Box.Point: This points to the terminating box.

b. DTNN: This was the Integration Group number (DTN.No) for the
terminating box.

c. PMN: This was the Progression Mode (PMN) of the terminating box.

d. XIT: This was the exit selected by the terminating box.

3.1.5 Data Items Set or Used

a. Own.Box Data

(1) (Box.Stat)g - Box status

(2) (CMN)a,i - Contractor manpower

(3) (GMN)a,i - Government manpower

(4) Box.Type - Type of box

(5) (Box.Pointer)s - From selected Successor List (YList or NList).

b. Successor Box (S-Box) Data

(1) Box.Type

(2) DTN - Group Dependency

(3) PList - Predecessor List items

(a) (SLA)p Start Logic Assigned

(b) (Gp.Ctrl)p DTN.No continuity controller

(c) (PMA)p Progression Mode assignment

(4) DTN.No - Group Number

(5) (FPDN)g - First Pred Input Received indicator

185

(6) (RPDN)g - Logical "OR" Pred Input Received indicator

(7) (PDN)n,g - Pred Input Status indicator vector

(8) (Pr.Wt)g - Predecessor Wait

(9) In.Wt - Assigned Internal Wait

(10) (CIn.Wt)g - Cumulative Internal Wait

(11) (Box.Stat)g Box Status

(12) (It.Ct)g Iteration Count.

c. Local Data

(1) Own.Box - Pointer to terminating box address

(2) PMP - Progression Mode of terminating box

(3) PMN - Progression Mode of S-Box

(4) PDTN - Group Number of terminating box

(5) XIT - Successor list selection indicator

(6) p - Own.Box position on PList

(7) "n" - Own.Box location on the Predecessor Input Status vector

(8) IWait - Duration of Internal Wait.

d. System Items

(1) TIME.V - Current Simulation Time

(2) (CHNA)a - Total contractor manpower use vector

(3) (GNNA)a - Total government manpower use vector

(4) Rsr.History - Resource Usage History file

(5) It.Limit - Iteration count limit.

3.2 Box.Proc: Box Processor

3.2.1. Purpose

The Box.Proc Event Routine performs all the actions needed to simulate
the functions represented by the box addressed for this scheduled Event.
Since these functions are somewhat dependent on the type of box being entered,
both common and box-type-unique functions are processed.

186

3.2.2. Event Scheduling

A Box.Proc Event Notice is scheduled by the Flow Event Routine whenever
all entry qualifications for a box have been met, and after the Internal Wait
(if any) has been observed.

3.2.3 Actions

a. Override Stop

The Flow.Override field is checked to see if a Flow Stop is indicated
(Flow.Override = 1). If so, the program returns with no further action.
Otherwise the action continues as follows.

b. The following initiating Event Notice parameters are saved:

(1) Box.Point becomes the pointer (Own.Box) to the box to be
processed.

(2) DTNN becomes the Integration Group Number (DTN.No)g for this
access.

(3) PMN is sa.ed to indicate whether the Progression Mode is Forward
or Iterative. This is needed for any subsequent Flow Event
Notice created per paragraph 3.2.5.

c. Event Time Storage

(1) If this is a first entry to the box ((It.Ct)g = 1) the Earliest
Start Time (EST)g is set to now (TIME.V).

(2) In all cases, the Latest Finish Time (LFT)g is set to now

(TIME.V).

d. Box Type Processor Selection

The Box.Type field is checked so that the appropriate Box Type processing
is conducted; viz.:

187

Type Function Paragraph

2 or 3 (Activity) e

5 (Decision) f

6 (Counter) g

7 (Special Event - Milestone) h

8 or 9 (Special Event - Other) TBD

others (Undefined)

e. Activity Box Processing

(1) Override Skip Actions

If the Flow.Override field indicates that the box is to be
skipped (i.e., = 2), an immediate Flow Event Notice (TIME.A =
TIME.V) is scheduled per paragraph 3.2.3e(5), with XIT = 0.
Otherwise:

(2) The box is put into "ON" state ((Box.Stat)g = 4).

(3) The duration of the activity (IDurrn) is computed. On the
initial program this is set equal to the Assigned Duration
(IDur)g,i.

(4) IDurrn is added to the (cumulative) Total Duration (ADurl)g.

(5) The Latest Finish Time (LFT)g is set to TIME.V + IDurrn.

(6) Each element of the contractor manpower use vector (CMNU)a and
the government manpower use vector (GMNU)a are computed. In
Model 0 these are set equal to input items (CMN)a,i and (GMN)a,i
respectively.

(7) The assigned manpower use values ((GMNU)a and (GMNU)a) are added
to the network totals ((CMNA)a and (GMNA)a). These are then
stored (with TIME.V) in (Rsr.History).

(8) The man-days expended by the contractor (CMND)a and by the
government (GMND)a are computed; i.e.:

(CMND)a = (CMNJ)a x IDurrn

(GMND)a = (GNNU)a x IDurrn

(9) The man-day expenditures are added to the cumulative totals for
the box (CME)a,g and (GME)a,g; i.e.:

188

(CME)a,g = (CME)a,g + (CMIND)a

(GME)a,g = (GME)a,g + (GIIND)a

(10) (CMND)a and (GKND)a are added to the (cumulative) full system
man-day totals (FNETCM)a,m and (FNETGM)a,m, respectively. This
requires that the man-days be assigned to one (or more) of the
monthly time slots starting with the award of the contract. If
more than one month is spanned, the man-days are assigned
proportionate with the relative occupancy of each included
month.

(11) If Own.Box belongs to a Subnetwork, the monthly distributed
values of man-days (per Step 10) are added to the Subnetwork
manpower use monthly totals (SNETCM)a,m and (SNETGM)a,m.

(12) If this is an iterative reentry to this box ((It.Ct)g GT 1), the
iterated cumulative totals are updated; i.e.:

(a) Add IDurrn (duration) to (ADur2)g.

(b) Add (CMND)a (contractor man-days) to (CME2)a,g.

(c) Add (GMND)a (government man-days) to (GME2)a,g.

(13) A Flow Event Notice is created per paragraph 3.2.5 below.

(a) Event Time (TIME.A) is set equal to now (TIME.V) plus the
activity duration (IDurrn).

(b) Box Exit (XIT) is set to zero.

f. Decision Box Processing

(1) Override Exit Selection

(a) If Flow.Override = 2 ("Yes" exit) set XIT = 0.

(b) If Flow.Override = 3 ("No" exit) set XIT 1.

(c) For the above cases, the action continues at step (3).

(d) Otherwise, normal processing continues at step (2).

(2) Normal Exit Resolution

(a) The exit probability parameter (pYES)i is used as input to
the SIMSCRIPT 11.5 RANDOM function to select the exit
(XIT).

(b) The exit selected (XIT) is saved for statistical processing
as (XIT)g,i.

189

(3) A Flow Event Notice is created per paragraph 3.2.5.

(a) Event time (TIME.A) is set to now (TIME.V).

(b) Box exit (XIT) is set to the value obtained in step (1) or
Step (2), as applicable.

(4) The Box status is set to OFF (Box.Stat)g = 0.

g. Counter Box Processing

(1) Progression Mode check - Counter Box actions are to be taken
only when the box is entered during Forward Progression. If the
box is addressed on Iterative Progression (PMN = 1), the Ever
Routine returns without taking any further action.

(2) Override Exit selection - This is the same as for the ordinary
Decision Box per paragraph 3.2.3f(1).

(3) Normal Exit Resolution

(a) The Counter Box Integration Group type attribute (DTN)
establishes the Group (1 = DIG, 2 = TIG) to which the box
belongs. Based on the DTN field content, the maximum Group
number (DTN.Max) is set equal to CPCI attribute NDIG or
NTIG. (These are both input parameters.)

(b) The Integration Group number DTNN provided within the Event
Notice is then compared with DTN.Max to select a flow exit
(XIT) as follows:

- If DTNN = DTN.Max, set XIT = 0("Yes" exit).
- If DTNN LT DTN.Max, set XIT = 1("No" exit).
- Otherwise, produce an Error Halt giving:
Box.ID, Box.Type, DTNN value, and Current
Time (TIME.V).

(4) A Flow Event Notice is created per paragraph 3.2.5:

(a) Event time (TIME.A) is set to now.

(b) Box Exit (XIT) is set to the value obtained in step (2) or
(3), as applicable.

(c) In the event of an Error Halt per paragraph (3)(b), no
Event Notice is created.

(5) The box is put into OFF status (Box.Stat)g = 0.

h. Special Event - Milestone Processing.

(I) A Flow Event Notice is created per paragraph 3.3.5

190

(a) Event time (TIME-) is set to now

(b) Box Exit (KIT) is set to zero

(c) Progression Mode (PMN) is set to forward.

3.2.4 Input Event Notice Parameters

a. Box.Point - Designates the box involved

b. DTNN - Integration Group number for this event

c. PMN - Progression Mode; Forward or Iterative.

3.2.5 Output Event Notice Parameters
(For a subsequent Flow Event)

a. TIME.A - Scheduled event time

b. Box.Point - Designates Own.Box address

c. DTNN - Integration Group number output (always the same as
Integration Group number input).

d. PMN - Progression Mode (always the same as its value on input Event)

e. KIT - Exit selected.

3.2.6 Data Item Set Or Used

a. Own Box Table Data

(1) Common Items

(a) (Box.Type) - Box function

(b) (Box.Stat)g - Box status

(c) (DTN) - Group type

(d) (DTN.No) - Integration Group number

(e) (It.Ct)g - Iteration count

(f) (Flow.Override) - Override Indicator

(g) (EST)g Earliest Start (or Occurrence) Time

(h) - Latest Finish (or Occurrence) Time

(2) Activity Box Items

191

......

(a) (IDur)g,i - Activity duration; input

(b) (ADurl)g - Activity duration; cumulative total

(c) (ADur2)g - Activity duration; cumulative; iteration only

(d) (CHN)a,g,i - Assigned manpower; contractor; input

(e) (GMN)a,g,i Assigned manpower; government; input

(f) (CME1)a,g - Expended manpower; contractor; total man-days

(g) (CME2)a,g - Expended manpower; contractor; iterated man-
days

(h) (GME1)a,g - Expended manpower; government, total man-days

(i) (GME2)a,g - Expended manpower; government; iterated man-
days.

(3) Decision Box Data

(a) (pYES)i - Yes exit probability; input

(b) (XIT)g,i - Exit selection, saved.

b. System Data

(1) (TIME.V) - Current Simulation Time (now).

(2) (NDIG) - Quantity of DIGs, this CPCI

(3) (NTIG) - Quantity of TIGs, this CPCI.

c. Local Data

(1) Common Items

(a) (DTNN) - DTN number

(b) (PMN) - Progression Mode

(c) (XIT) - Exit selected

(2) Activity Box Items

(a) (IDurrn) - Activity duration, computed (days)

(b) (CMNU)a - Manpower use rate, contractor

(c) (GHNU)a - Manpower use rate, government

192

-- -I --- I --

(d) (CMND)a - Manpower expended, man-days, contractor

(e) (GMND)a - Manpower expended, man-days, government.

(3) Other Box Type Item

(a) DTN.Max - The maximum quantity of this group.

d. Network Data

(1) (FNETCM)a,m - Total men being used, per month, full network,
contractor

(2) (FNETGM)a,m - Total men being used, per month, full network,
government

(3) (SNETCM)a,m - Total men being used, per month, each Subnetwork,
contractor

(4) (SNETGM)a,m - Total men being used, per month, each Subnetwork,
government

(5) (Rsr.History)a - Total Men in use now; (sequential file).

193

APPENDIX G

DEMONSTRATION MODEL (MO)
STATISTICS DEVELOPMENT

To produce the planned Simulator reports, the following data will be
collected during each Single Simulation Pass (SPASS) and aggregated for the
many SPASS repetitions to obtain statistical results. Paragraph 1 of this
appendix defines the SPASS gathered data; Paragraph 2 defines the SPASS
repetition data; Paragraph 3 briefly describes the content of the output
report produced; and Paragraph 4 identifies the data to be entered by the user
in order to conduct a Simulation run. All Integration Group (DTN) dependent
data will be collected per Group (DIG or TIG), unless otherwise indicated.
Data marked with an asterisk (M) may not be obtained until the Prototype Model
(MI).

1. SPASS DATA COLLECTION

1.1 Activity Box (A.Box) Data

The following collected for each Activity Box.

a. Wait Durations

(1) Pr.Wt - Time spent waiting for the box's predecessors (Preds).
It starts when the first Pred is completed, and ends when the
last required Pred is completed.

(2) CIn.Wt - The cumulative sum of all Internal Waits (In.Wts)
sustained by the box. Each Internal Wait period reflects a
delay in starting that is inherent in the function. Each In.Wt
begins when all Pred input requirements are satisfied and ends
when the specified Internal Wait period completes. This only
applies to boxes on which In.Wt is not zero. The full value of
In.Wt is applied to each DTN and to each iteration.

(3) *RWtI - The sum of all Waits that occur when an activity is
otherwise able to begin, but cannot because manpower or other
needed resources are not available (e.g., the development or
test facilities are currently fully used, or are "down").

(4) *RWt2 - Same as RWtl, except that only the Waits associated with
iterative reentry are included.

b. Activity Duration

(1) Total (ADurl) - The time during which an activity is in actual
operation. It starts immediately after all Waits have completed
and continues until the activity is ended. Each time the A.Box

194

is reentered for iteration, the incremental duration is added to
the accumulated duration.

(2) Iterative (ADur2) - This is the same as ADurl except that only
the iterative reentry durations are accumulated.

c. Event Times

(1) Earliest Start Time (EST) - The earliest time at which the
function could begin, assuming no constraints other than
completion of all required predecessors.

(2) Latest Finish Time (LFT) - The latest time at which the activity
ends. If the Activity Box is entered several times (e.g., for
iteration) LFT will retain the simulated time when the ,last
activation ends.

d. Manpower Use Data

(1) (CME1)a - The total contractor manpower used in man-days per
manpower type is collected for each Activity Box. This includes
the sum of both the first use and all iterative reentry uses.

(2) (CME2)a - This is the same as (CME1)a except that only the
iterative reentry use is included.

(3) (GMEI)a - The same as (CMEI)a except that it applies to each
government manpower type.

(4) (GME2)a - Same as (GMEI)a, except that only iterative reentry
use is included.

e. Iteration Data

(1) It.Ct - The number of times that the box was activated (first
operation plus each subsequent iterative operation).

1.2 Decision (Branch) Box (B.Box) Data

The following information is collected for each branching Decision Box.

a. Wait Duration

(1) Pr.Wt - Same as paragraph 1.la(1).

(2) CIn.Wt - Same as paragraph 1.1a(2).

b. Event Times

(1) EST - Same as paragraph 1.lc(1).

195

(2) LFT - The time of last entry into this Decision Box; e.g., as a
result of iteration. If the box is entered only once, LFT =
EST.

c. Iteration Data

(1) It.Ct - Same as paragraph 1.1e(1)

(2) (XIT)i - The exit selected ("Yes" or "No") on each iteration
(contains room for up to "n" binary choices, where "n" is the
maximum number of allowable iterations).

1.3 Counter Box (C.Box) Data

The following information will be collected for each counter Decision
Box.

EST - Each time the C.Box is entered the Simulation Time (TIME.V) is
retained. Same as EST, paragraph 1.2b(1).

1.4 Subprocess Box Data

In Model 0 a Subprocess Box is the same as Activity Box. The box
distinction is intended for possible future use.

1.5 Support (Helper) Box Data

This is the same as an Activity Box. The distinction is intended for
future use.

1.6 Special Event Box (E.Box) Data

The following information will be collected for each Special Event Box.

a. Milestone Type

(1) EST - Records the Simulation Time (TIME.V) of each entry. Same
as EST, paragraph 1.2b(1). (Milestone Special Event Boxes
should not be entered via iteration).

b. Other Types (TBD).

1.7 Subnetwork Data

The following information will be collected for each of the 15 possible
Subnetworks definable by the user.

a. Manning and Manpower Use - This will aggregate the total manning and
manpower use by all activities within the network, as follows:

(1) (CSNETM)a - The contractor manpower usage (in man-days) on each
Subnetwork for each manpower type accumulated for each month

196

(i.e., aggregates of 20 working days) from start of contract.
Values for any activities which span month boundaries will be
proportionately subdivided among all such months.

(2) (GSNEThK)a - Same as (CSNETMM)a, except that they cover
government manpower types.

b. *Other Resource Utilization - The total utilization of each defined
support resource (e.g., programing and test facilities) will be accumulated
on a monthly basis.

1.8 Full Network Data

a. The data defined for Subnetworks (see paragraph 1.7) will be
collected for the entire network.

b. (CINA)a - A list of all contractor personnel manpower usage
transactions will be collected.

c. (GMNA)a - Same as (CMNA)a, except for government personnel.

2. PASS REPETITION DATA

At the conclusion of each SPASS the box-related data retained per
paragraphs 1.1 - 1.8 above will be aggregated to obtain statistical results,
as follows:

2.1 General Box-related Data

Each of the SPASS data items identified in the following table will be:

a. summed to obtain its total; and

b. squared and summed to obtain the basis for its variance:

Par. # Element Data Name Definition

1.1a(1) A.Box Pr.Wt Predecessor Wait Time
(2) " CIn.Wt Process Wait Time
(3) " *RWtl Resource Wait Time (Total)
(4) " *RWt2 Resource Wait Time (Iterative)

1.lb(l) " ADurl Total Activity Duration
(2) " ADur2 Iterated Activity Duration

1.1c(1) " EST Earliest Start Time
(2) " LFT Latest Finish Time

1.ld(l) " (CME1)a Total Contractor Manpower Usage
(2) " (CME2)a Iterated Contractor Manpower Usage
(3) " (GHE1)a Total Gov't Manpower Usage

197

Vm

Par. # Element Data Name Definition

(4) " (GHE2)a Iterated Gov't Manpower Usage

1.le(1) " It.Ct Iteration Count

1.2a(1) B.Box Pr.Wt Predecessor Wait Time
(2) " CIn.Wt Decision Wait Time

1.2b(1) " EST First Time of Decision
(2) " LFT Last Time of Decision

1.2c(1) " It.Ct Iteration Count

1.3 C.Box EST Count Increment Time

1.6a E.Box EST Time of Event

1.7a(1) SUBNET (CSNETMM)a Contractor Manpower
(2) SUBNET (GSNETMM)a Government Manpower

1.8a(1) FULNET Contractor Manpower
(2) FULNET Government Manpower

In addition, a count of the number of times each box was entered for the

first or only time (i.e., ignoring iterative reentry) will be maintained.

2.2 Decision Box Exit Summaries

SPASS data will be processed to extract exit history for each B.Box as a
function of the iteration number, based on (XIT)i data per paragraph 1.2c(2);
e.g.:

Iteration No. (It.Ct) 1 2 3 4 5

Quantity of Exits 100 69 35 6 0

"Yes" Exit Probability .31 .49 .82 1.00

2.3 Subnetwork and Full Network Data

These data will be extracted as follows:

a. Timing Data

The Earliest Start Time (EST) and Latest Finish Time (LFT) (per
Subnetwork) obtained in each SPASS will be summed to obtain each total, and
squared and summed to obtain each variance. Also, the most extreme values
(earliest and latest) of each will be retained.

198

b. Manpower Data

(1) The contractor manpower expended (in man-months per month,
(CSNEThM)a) will be summed, and squared and summed to obtain the
total and the variance.

(2) The government manpower expended (GSNETMM)a will also be treated
as in (1) above.

(3) Corresponding manpower level statistics will be developed from
(CFNETM1M)a and (GFNETMM)a.

(4) Statistics on total manpower expended (in man-months) for each
type of contractor and government manpower will be obtained from
the corresponding monthly totals for the whole contract period.

(5) *A profile of daily manpower use (by type) will be obtained by
converting CMNA and GMNA transactions into daily totals.

c. *Dollar Cost Data

(1) Manpower dollar cost data will be derived for each manpower
category listed in paragraph 2.3b above, by the application of
entered labor rate values. Overhead and General &
Administrative rates will also be reflected.

(2) *Other resource dollar costs will be treated in later versions.

(3) Total monthly, annual, and full project dollar costs will also
be developed.

3. REPORTS

Reports that include means and standard deviations, based on the
accumulations defined above, the corresponding box entry counts, and
appropriate box, Subnetwork, and full network identification will be prepared
at the end of each Simulator run (i.e., after all repetitions). A simple
project schedule that includes defined milestones will also be prepared.
These reports' formats are to be determined.

4. SIMULATOR INPUT DATA

The Simulator Model 0, which will be used for project cost and schedule
forecasting, will require the following data to be entered for each CPCI being
simulated.

a. The network linkage definition per Table B-i;

b. Override information which will customize the network configuration to
reflect the specific procurement condition; (This would be accomplished by the

199

addition and deletion of function boxes and by the corresponding modification
of the Predecessor and Successor lists for the remaining function boxes.)

c. Parameter data per Tables B-2 through B-4 that is customized to
include any new boxes added per step b and by value changes that reflect the
specific procurement (including manpower category changes, if applicable);

d. The quantity of DIGs planned for the development, and the proportion
(of the effort) consumed on each DIG;

e. The quanitity of TIGs planned for the qualification testing and the
proportion of effort consumed on each TIG; and

f. Miscellaneous project data that includes the project starting date.
its estimated duration, and the number of simulation repetitions to be
conducted.

200

APPENDIX H

DATA REPORTING FOR
LATER SIMULATOR MODELS

1. STRUCTURES OF INTEREST

Following are several Process Model structures about which users may want
information, and for which the Process Model simulation program (i.e., the
Simulator) must therefore collect statistics. Activity Boxes, Decision Boxes
and Special Event boxes are the basic elements from which the others are
composed. Subprocess Calls are each shorthand notation for a group of these
basic elements. Paths, Subnetworks, and the entire process are respectively
higher-level aggregates of basic elements and Subprocess Calls. Activity
Boxes, Decision Boxes, Special Event Boxes and Subnetworks have been explained
elsewhere in this report. Subprocesses and Paths are explained below.

A Subprocess is any portion of the Model logic that (1) comprises a
connected set of two or more basic elements or Subprocess Calls (to the same
or to another Subprocess); and that (2) has a single entrance and a single
exit. A Subprocess Call is any element of the Model logic that stands for an
instance of a specified Subprocess. A Subprocess Call is exactly like a
closed subroutine call in a programming language. Like a subroutine call, a
Subprocess Call may have input or output parameters.

A Path is a specific single-thread sequence of Activity Boxes, Decision
Boxes, and Subprocess Calls. A Path can be defined by a list of connected
Activity Boxes, Subprocess Call boxes, and specific Decision Box exits. A
Path may include no concurrent activities and may include only a single exit
from each of its Decision Boxes. A Path may include a loop. Examples of
Paths (see Figure A-2) include:

a. 2A, 6F, 6G, 6H, 61(Y)

b. 6G, 6H, 61(N).

Example b. includes a loop.

Path statistics may help Simulator debugging and may also help reveal
elapsed times and costs along single-thread sequences. Ability to trace a
Path may be important, too.

Paths are special cases of Subnetworks. No special Path statistics will
be provided, since a Subnetwork can be defined to represent any Path.

2. SPECIFIC REPORT TYPES

The information contents of the reports desired from Simulator Models 1,
2, & 3 are outlined below, as are the input data needed to specify them.

201

These reports' exact formats have yet to be defined. Asterisks distinguish
the different Models' report contents. Those that Model 1 should provide are
not flagged. The additional reports or report components that are candidates
for Model 2 are marked by a single asterisk (*), while those that Model 3 or
later will provide are flagged by two asterisks (**). The same conventions
apply to the inputs needed. Most of the reports identified below are tabular.
Graphic equivalents of most of these will be provided, some as early as
Model 1. Superimposed plots of selected simulation results, of the same or
different type (if cormptible) from the same or successive simulation runs
will also be available.

2.1 For the Overall Process

2.1.1 General

2.1.1.1 Inputs Needed

a. Number of Simulator Repetitions

Note: This is the number of times that Simulator execution will
repeat, with the same inputs but with different pseudo-random number
seeds, to smoothe out random errors. In Model 2 or later we hope tko
include an adaptive algorithm that will check for convergence as a
function of defined statistical confidence limits, and that will stop
repetition sooner if and when simulation results within the limits
have been achieved.

b. Program Start Date (Month, Day & Year)

c. System Structure Indicators

(1) Number of System Segments*

(2) Number of CPCIs

(3) Number of Design Integration Groups (DIGs) per CPCI

(4) Number of Test Integration Groups (TIGs) per CPCI

(5) Number of CPCs per CPCI

(6) Number of new CPCs per DIG

(7) Intra-CPCI Dependencies at the DIG Level.

Note: E.g., that DIG-Il of CPCI 1 may not begin until DIG-I of
CPCI 3 is finished.

d. System Definition Matrix**

Note: The system definition matrix will replace the system structure
indicators (input c.) in Simulator Model 2 and later. The Simulator

202

use of the system definition data (e.g., in parametric equations)
will explicitly reflect differences in computer program size,
difficulty, development approach, etc.

(1) Rows: System Components

Note: The system itself, each of its segments, each of its
segment's CPCIs, and each CPCI's CPCs are the system components.

(2) Columns: System Component Identifier; DIG Number of First
Development; First DIG Development Priority (I = High); Test
Priority (I = High); SARE Parameter Data Types; Dependencies.

Note: The system component identifier specifies each system
component's level and hierarchial position. The DIG number of
first development specifies when that system component will
first be started. The first TIG number specifies when the
system component will first be tested. The SARE parameters
specify each system component's presumed size, difficulty, etc.

e. Manpower Availability Matrix*

(1) Rows: Months Since Program Start

(2) Columns: Contractor & Government Labor Categories

(3) Elements: Number of Persons Available

Note: Some future Simulator version may want to represent
manpower that is somewhat interchangeable by type (as people
really are). This may entail representing numbers of people who
have several skills, and assigning to a task any person who has
such a skill (subject, perhaps, to assignment priorities). This
outline does not reflect this concept further.

f. Other Resource Availability Matrix*

(1) Rows: Months Since Program Start

(2) Columns: Other Resource Types

(3) Each Element:

(a) Other Resource Quantity

(b) Quantity's Unit of Measure.

g. Integration Tree Matrix-%

(1) Rows: System Components & Other Integrands

203

Note: "Other Integrands" = modules and interim results of

integration that are not system components.

(2) Columns: TIGs

(3) Each Element:

(a) Component ID of Integration Result

(b) Component IDs of All Integrands.

h. Simulation Report Selection Matrix**

(1) Rows: The Entire System; All Segments; Each Segment; All CPCTq;
Each CPCI; All CPCs; Each CPC

(2) Columns: System Component Level; System Component Name; The
Report Types Appropriate to Each Row

(3) Each Element: Level Number; System Component Name (or "All");
Whether to Produce the Report

Note: Many of the reports identified below will output data for
each of the acquisition program's calendar months during which
manpower or other resources are spent. Simulator Model 1 will
assume a fixed number of working days (i.e., 20) per calendar
month. Subsequent more sophisticated versions (i.e., Model 2 or
later) may develop results per a user-specified, variable number
of working days per month. If so, the Model input should
include the following vector:

i. Program Month Composition Vector*'

(1) Rows: Calendar Months Since Program Start

(2) Each Element: Number of Working Days in this Month (or Number
of Hours Worked / 8) (Precision = .1 day).

2.1.1.2 Output Produced

a. Listing of All Simulation Program Inputs as Entered

b. See Sections 2.1.2 - 2.1.7 below.

2.1.2 Manpower Use

2.1.2.1 Additional Inputs Needed

a. n1 = Number of Standard Deviations (Sigma) for Optimistic Estimates

b. n2 = Number of Standard Deviations (Sigma) for Pessimistic Estimates

204

2.1.2.2 Output Produced

a. Mean (Expected Value) Manpower Expenditure Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

Note: The Simulator will be designed so that the numbers of
contractor and government manpower types, as well as their
identities, can easily be changed. Need for such alteration is
likely as the Simulator's application changes.

(3) Each Element: Mean Number of Man-Days Expended (in All

Repetitions).

b. Manpower Expenditure Variance Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: Variance of Number of Man-Days Spent

Note: We currently foresee four sources of manpower variation:
(1) different numbers of initial activity executions due to
random decision box alternative selection; (2) different numbers
of iterations due to random loop control decision outcomes; (3)
in Model 3 and later, different manpower expenditure per
activity and per activity iteration due to random sampling of
manpower level and duration based 3-value (PERT-like) estimates;
and (4) differences in monthly values due to the different
delays that result from the abvove factors and different
manpower constraints.

c. Optimistic Manpower Use Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: (Mean - nI Sigma) Number of Man-Days Spent.

d. Pessimistic Manpower Use Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: (Mean + n2 Sigma) Number of Man-Days Spent.

205

Note: Corresponding reports showing manning levels (vice man-
days) will also be provided.

2.1.3 Other Resources Use*

2.1.3.1 Additional Inputs Needed*

a. n3 = Number of Standard Deviations (Sigma) for Optimistic Estimates*

b. n4 = Number of Standard Deviations (Sigma) for Pessimistic
Estimates*.

2.1.3.2 Output Produced*

a. Mean (Expected Value) Other Resource Use Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types and Units of Measure

(3) Each Element: Expected Quantity of this Resource Used.

b. Other Resource Use Variance Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types and Units of Measure

(3) Each Element:

(a) Number of Initial Activity Executions Entailing Use of this
Resource Type During this Month.

(b) Variance of Quantity of this Resource Used.

c. Optimistic Other Resource Use Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types and Units of Measure

(3) Each Element: (Mean - n3 Sigma) Quanlty of Each Resource Used.

d. Pessimistic Other Resource Use Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types and Units of Measure

(3) Each Element: (Mean + n4 Sigma) Quantity of Each Resource Used.

206

2.1.4 Dollar Cost

2.1.4.1 Additional Inputs Needed

a. Assumed Salary + Overhead Rate Matrix

(1) Rows: Months Since Program Start

(2) Columns: Contractor and Government Labor Categories

(3) Elements: Undiscounted Hourly Labor Rate (Including Overhead)
for Each Month Since Program Start

Note: The proposed reports do not distinguish between regular
and overtime pay. To do so the Simulator would need to handle
separate rates and manhour estimates for both.

b. Assumed Other Resource Rate Matrix*

(1) Rows: Months Since Program Start

(2) Columns: Resource Types

(3) Each Element: Undiscounted Rate per Unit of this Resource Type

Note: These units must be the same as those specified for in
the other Resource Availability Matrix (see paragraph 2.1.1.1f).

Note: The Simulator (Model 2 and later) should calculate costs
as of the valuation date (input c.). Using the Assumed Interest
Rate Vector (input d.), the costs of work performed before the
Valuation Date should be accumulated (i.e., increased) and the
costs of work to be performed after the valuation date should be
discounted (i.e., decreased).

c. Valuation Date (Month & Year).

d. Assumed Interest Rate Vector

Note: The Simulator provides for input of an interest rate vector to
reflect the effect of anticipated changes in interest rate. However,
the Simulator should optionally accept a single rate and create a
(constant) vector from it.

Note: To develop costs that ignore interest, the user should input
no Assumed Interest Rate Vector.

(1) Rows: Months Since Program Start

(2) Each Element: Assumed Annual Simple Interest Rate Applicable to
the Month.

207

2.1.4.2 Output Produced

a. Mean (Expected Value) Manpower Cost Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of Mean Manpower of this Type Expended.

b. Optimistic Manpower Cost Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of (Mean - nI Sigma) Manpower of this Type
Expended.

c. Pessimistic Manpower Cost Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Manpower Types; Contractor, Government, & Grand Totals

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of (Mean + n2 Sigma) Manpower of this Type
Expended.

d. Mean (Expected Value) Other Resource Cost Matrix*

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types; Government & Contractor Totals; Grand
Total

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of Mean Other Resource Use.

e. Optimistic Other Resource Cost Matrix*

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types; Government & Contractor Totals; Grand
Total

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of (Mean - n3 Sigma) Other Resource Use.

f. Pessimistic Other Resource Cost Matrix*

208

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Resource Types; Government & Contractor Totals; Grand
Total

(3) Each Element: Accumulated or Discounted Dollar Value as of
Valuation Date of (Mean + n4 Sigma) Other Resource Use.

g. Mean (Expected Value) Total Dollar Cost Matrix*

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Contractor & Government Totals; Grand Total

(3) Each Element: Sum of the Corresponding Column from the Mean
Manpower Cost and Other Resource Cost Matrices.

h. Optimistic Total Dollar Cost Matrix*

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Contractor & Government Totals; Grand Total

(3) Each Element: Sum of the Corresponding Columns from the
Optimistic Manpower Cost and Other Resource Cost Matrices.

i. Pessimistic Total Dollar Cost Matrix*

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns: Contractor & Government Totals; Grand Total

(3) Elements: Sum of the Corresponding Columns from the Pessimistic
Manpower Cost and the Optimistic Other Resource Cost Matrices.

2.1.5 Elapsed Time

2.1.5.1 Additional Inputs Needed

a. Gantt Chart Content & Arrangement Option(s)

(1) Chart Content Options

(a) Milestones (& Corresponding Box IDs) Only

(b) Milestones & Subnetworks Only

(i) All Milestones & Subnetworks

(ii) List-specified Subset Only

(c) Milestones Plus Activity & Decision Boxes Only*

209

i) All Activities & Decisions

(ii) List-specified Subset Only

(d) Milestones, Subnetworks, & Component Activities &
Decisions*

i) All Milestones, Subnetworks, & Component Activities &
Decisions

(ii) List-specified Subset Only

(2) Line Content Options

(a) Mean Initial Start Time to Finish Time

(b) Four Components*

(i) Wait for Immediate Predecessors

(ii) Internal Wait Time

(iii) Wait for Resources

(iv) Activity Duration

(3) Arrangement Options

(a) Network Definition Table Order

(b) By Subnetwork Number

(c) By Increasing Mean Start Time (at Each Level Included)*

(d) User-Specified Order*.

b. n5 = Number of Standard Deviations for Optimistic Estimates

c. n6 = Number of Standard Deviations for Pessimistic Estimates

2.1.5.2 Output Produced

a. Gantt Chart of Milestones

Note: For Model 1 this may only be a list of Milestones and

associated dates.

b. Gantt Chart of Milestones Plus Mean Start & Finish Times.

c. Gantt Chart of Milestones Plus Optimistic Start & Finish Times.

d. Gantt Chart of Milestones Plus Pessimistic Start & Finish Times.

210

e. Gantt Chart of Milestones Plus Optimistic, Mean, & Pessimistic Start
& Finish Times.*

f. Network Logic Diagram Showing Milestones Plus Boxes Annotated by
Optimistic, Mean, & Pessimistic Start & Finish Times.** The diagram will
highlight the critical path through the network.

2.1.6 Resource Constraint HistoryA

2.1.6.1 Additional Inputs Needed*

a. n7 = First Sampling Day

b. n8 = Sampling Interval

Note: The Resource Constraint History Tables (See paragraph
2.1.6.2a) present values of resources provided, in use, in demand but
unavailable, etc., as of a specified sample of days since acquisition
program start. n7 and n8 (both integers) specify the first such day
and the number of days between successive samples.

2.1.6.2 Output Produced*

a. Resource Constraint History Tables (One per Manpower or Other
Resource Type)

(1) Once-per-Table Data

(a) Resource Type Identifier

(b,c)Maximum & Minimum Value of Resource Provided (RI)

(d,e)Maximum & Minimum Value of Resource In Use (R2)

(f,g)Maximum & Minimum Value of Resource Unused (R3)

(h,i)Maximum & Minimum Value of Unsatisfied Demand (R4)

(j,k)Maximum and Minimum Number of Processes in Execution (Ne)

(l,m)Maximum & Minimum Number of Processes Delayed because of
this Resource was Unavailable (Nd)

(2) Time History of Resource Status

(a) Rows: Selected Days Since Program Start (i.e., n7, n7 +
n8, n7 + 2n8, etc.)

(b) Columns:

(i) Column 1: Day Number of Sample

211

~R

(ii) Columns 2 - 8: R1, R2, R3, R4, R2 + R3 + R4; Ne; Nd

(iii)Each Element: Value of the Variable at Start of the
Day

Note: In Model 2 or later, these tables should be supplemented
by plotted charts.

b. Resource Shortage Impact Matrices (One per Manpower or Other Resource
Type)

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns:

Note: Each column presents a type of value related to the
availability of this resource. Each element shows the value of
this type for the time period represented by the row. The
elements of columns 4, 6, 7, and 8 quantify time-related losses
during each such time period that happen because (at least in
part) a shortage of this resource prevents one or more processes
from starting or beginning iteration during the time period.

Note: A process may need more than one type of resource, and
may be delayed because too little of two or more such resource
types are available. In such cases the Simulator will collect
unavailability data independently for each such resource, during
whatever periods the resource is in short supply.

(a) Column 1: Number of Resource Unit-Days (e.g., Man-Days)
Provided

(b) Column 2: Number of Resource Unit-Days Used

(c) Column 3: Number of Available Resource Unit-Days Unused

(d) Column 4: Number of Unavailable Resource Unit-Days

Note: This is the sum, for each process delayed because it
couldn't get enough of the resource, of each required
amount of the resource times the number of days the process
was delayed because it couldn't get the needed amount.

(e) Column 5: Sum of Column 2, 3, & 4 Values

Note: This may often somewhat exceed the Column 1 value.

(f) Column 6: Number of Different Processes Delayed

(g) Column 7: Number of Process-Days Lost

212

Note: This is the sum of the delays incurred during the
period by a11 processes delayed (during the period) because
(in part at least) they couldn't get enough of the
resource.

(h) Column 8: Normalized Size of the Shortage

Note: Column 4/Column 7. This is a rough estimate of the
level of this resource needed over the entire period to
allay the shortage. However, users should note that
providing this level may not entirely relieve the problem,
in part because of interactions among this and other
constraints. E.g., relieving another bottleneck could
increase the demand on this resource.

c. Resource Demand Lists*

(1) For any Manpower or Other Resource Type; and for any month, any
fiscal year, or the entire acquisition program duration, a list
of the processes consuming the resource, and the amount consumed
durin$ the period, may be requested.

(2) A similar list of the processes unable to start or repeat during
the period because they cannot obtain enough of the resource may
be requested. Both lists will be arranged in decreasing order
of Resource Unit-Days. These lists should help identify prime
"cost-drivers".

d. Predecessor Completion Impact Matrix

(1) Rows: Calendar Months Since Program Start; FY & Grand Totals

(2) Columns:

(a) Column 1: Number of Different Processes Delayed Waiting
for Essential Immediate Predecessors to Finish

(b) Column 2: Number of Process-Days Lost Thereby

(c) Column 3: Mean Number of Process-Days Lost (i.e., Column
2/Column 1)

Note: This report is intended to indicate:

(1) limits on the benefits of overlapping concurrent activities (for
a given process);

(2) the potential for improvement by process revisions aimed at
better matching the durations of concurrent process paths.

213

2.1.7 Trace

SINSCRIPT 11.5 provides a listing of each Event as it is removed from the
Event queue. It also provides a program flow trace (from the main program)
when a program aborts. Both of these look useful.

2.2 For Each Subnetwork

2.2.1 Additional Inputs Needed

a. Subnetwork Membership of Each Basic Element & Subprocess Call.

b. Same as Overall System Inputs (see paragraph 2.1.1).

2.2.2 Output Produced

Same as Overall System Results (see paragraph 2.1.2).

2.3 For Each Path

No output will be provided for Paths per se, since a user can designate
each Path of interest as a Subnetwork.

2.4 For Each Activity Box

2.4.1 Additional Inputs Needed

a. Activity Box ID.

b. Subnetwork Number (0 = None).

c. Subprocess ID (Blank = None).

d. Activity Priority (I = High).*

e. Responsible Agency Code (i.e., "Doer").

f. System Level Code.

g. Number of Immediate Predecessors.

h. Immediate Predecessor Matrix (Same as paragraph 2.4.2a(l)(i).

i. Immediate Successor Vector

Each Element: Box ID of an Immediate Successor

j. Internal Wait Time

(1) Mean Value

(2) Variance.

214

k. Required Manpower Matrix (For Each Integration Group)

(1) Columns = Manpower Types; e.g., Contractor Sys, Prg, Tst, Spt;
Government participating organizations.

Note: These types should be checked vs. those designed for
SARE.

(2) Rows: One per Iteration

(3) Each Element: Number of Persons of This Type Needed per
Iteration.

1. Required Other Resource Matrix (One per Integration Group)*

(1) Columns: Other Resource Types & Units

(2) Rows: One per Iteration

(3) Each Element: Number of Units of this Resource Needed for this
Iteration.

m. Required Duration Vector (For each Integration Group)

(1) One Element per Iteration

(2) Each Element a Pair

(a) Expected Value of Duration

(b) Variance of Duration.

n. Duration Iteration Vector

(1) One Element per Iteration

(2) Each Element the Proportion of the Original Duration Estimate
Required to Complete Each Iteration.

2.4.2 Output Produced

a. Activity Box Activation Tables (One Set per Activity Box. One
Instance per Integration Group, & Total).

(1) Once per Table Data:

(a) Activity Box ID

(b) Subnetwork Number (0 = None)

(c) Containing Subprocess ID (Blank = None)

215

...............

(d) Activity Priority (I High)*

(e) Integration Group Number; "Total"

(f) Responsible Agency Code (i.e., "Doer")

(g) System Level Code

(h) Number of Immediate Predecessors

(i) Immediate Predecessor Matrix

(i) Rows: One per Immediate Predecessor

(ii) Columns: Box ID (including Decision Box Exit ID); Box
Type; Start Logic (see Figure A-i); Progression Mode;
Group Number Controller; Iteration Loop Return?
(Yes, No); Integration Group Repetition Return? (Yes,
No).

(j) Number of Immediate Predecessors Requiring Initial Wait

(k) Mean Initial Wait for Required Immediate Predecessors

(1) Variance of Initial Wait

(m) Mean Initial Internal Wait Time

(n) Initial Internal Wait Time Variance

(o) Number of Different Manpower & Other Resource Types Needed

(p) Mean Wait for Available Manpower & Other Resources

(q) Variance of Wait for Available Resources

(r) Mean Initial Activity Start Time

(s) Variance of Initial Activity Start Time

(t) Mean Total Activity Duration: All Iterations

(u) Variance of Total Activity Duration: All Iterations

(v) Mean Total Elapsed Time ((m) (p)+(t))

(w) Variance of Total Elapsed Time

(x) Mean Activity Finish Time ((r)+(v))

(y) Variance of Activity Finish Time

216

(z) Activity Manpower Use Vector

One Element per Manpower Type. Each Element: Total
Manpower of the Type Used.

(aa) Activity Manpower bse Variance Vector

One Element per Manpower Type. Each Element: Variance of
Total Manpower of this Type Used

(ab) Other Resource Use Vector*

One Element per Other Resource Type. Each Element: Total
of the Other Resource Type Used; Units

(ac) Other Resource Use Variance Vector*

,One Element per Other Resource Type. Each Element:

Variance of the Total Other Resource Type Used

(ad) Mean Number of Iterations

(ae) Variance of Number of Iterations

(2) Per Iteration Data

Note: Each time a box is activiated, per Simulator repetition
and per Integration Group, is an iteration.

(a) Rows:

(i) Number of Activations, this Iteration (for All
Simulator Repetitions)

(ii) Relative Frequency of Activation, this Iteration
(i.e., Column (i) Value / Actual Number of Simulator
Repetitions)

(iii)Mean Activity Duration, this Iteration

(iv) Activity Duration Variance, this Iteration

(v) Mean Activity Manpower Use Vector, this Iteration (One
Element per Manpower Type)

(vi) Activity Manpower Variance Vector

(vii)Nean Activity Other Resource Use Vector, this
Iteration* (One Element per Other Resource Type)

(viii)Activity Other Resource Use Variance Vector

217

(b) Columns: One per Iteration.

2.5 For Each Decision Box

2.5.1 Additional Inputs Needed

a. Decision Box ID.

b. Subnetwork Number (0 = None).

c. Subprocess ID* (Blank = None).

d. Responsible Agency Code (i.e., "Doer").

e. System Level Code.

f. Number of Immediate Predecessors.

g. Immediate Predecessor Matrix Same as paragraph 2.4.2a(1)(i).

h. Possible Decision Box Outcome Matrix

(1) Rows: Possible Branches

(2) Columns:

(a) Column 1: Branch ID

(b) Column 2: Expected Branch Probability, First Iteration

(c) Columns 3-n (n less than 11): Expected Branch Probability,
Subsequent Iterations.

i. Immediate Successor Matrix

(a) Rows: Possible Branches

(b) Columns: Possible Immediate Successors of Each Branch

(c) Each Element: Branch ID; Immediate Successor ID.

2.5.2 Output Produced

a. Decision Box Activation Table (One Set per Decision Box. One
Instance per Integration group, & Total).

(1) Once per Table Data:

(a) Decision Box ID

(b) Subnetwork Number (0 = None)

218

(c) Containing Subprocess ID* (Blank = None)

(d) Integration Group Number; "Total"

(e) Responsible Agency Code (i.e., "Doer")

(f) System Level Code

(g) Number of Imediate Predecessors

(h) Immediate Predecessor Matrix (Same as paragraph 2.4.2a(1))

(j) Number of Initial Predecessors Requiring Initial Wait

(k) Mean Initial Wait for Required Imediate Predecessors

(1) Variance of Initial Wait

(m) Mean Time of First Occurrence

(n) Variance: Time of First Occurrence

(o) Mean Number of Iterations

(p) Variance of Number of Iterations.

(2) Per Iteration Data

Note: Each time a box is activated, per simulation program
repetition and integration group is an iteration.

(a) Rows:

(i) Number of Activations, this Iteration (for All
Simulation Program Repetitions)

(ii) Relative Frequency of Activation, this Iteration
(i.e., Column (i) Value / Actual Number of Simulator
Repetitions)

(iii)ID of First Branch

(iv) Expected Probability of Selection (p(E)): First
Branch

(v) Relative Frequency of Selection (p(A)): First Branch

(vi) Variance of Relative Selection Frequency: First
Branch

(vii)ID, p(E), p(A), & Variance*: Second Branch

219

(viii)Corresponding Values for any Third, Fourth, etc.,
Branches

(b) Columns: One per Iteration

Note: These per iteration data should help the user decide
how closely the Monte Carlo simulation of branch selection
follows the probabilities expected.

2.6 For Each Special Event Box

2.6.1 Additional Inputs Needed

a. Special Event Box ID.

b. Subnetwork Number (0 = None).

c. Subprocess ID (Blank = None).

d. Type of Special Event (1 = Milestone; 2 = Random Process Modifier).

e. System Level Code.

f. Number of Immediate Predecessors.

g. Immediate Predecessor Matrix (Same as paragraph 2.4.2a(1)(i)).

h. Immediate Successor Vector

Each Element: Box ID of an Immediate Successor.

i. Boxes Altered Vector

j. Parameter Vector

2.6.2 Output Produced

a. Special Box Activation Table (One Set per Activity Box. One Instance
per Integration Group & Total).

(1) Once per Table Data:

(a) Special Event Box ID

(b) Subnetwork Number (0 = None)

(c) Containing Subprocess ID* (Blank = None)

(d) Special Event Type (I = Milestone; 2 = Process Modifier)

(e) Integration Group Number; "Total"

220

(f) System Level Code

(g) Number of Immediate Predecessors

(h) Immediate Predecessor Matrix (Same as paragraph
2.4.2a(1)(i))

(i) Number of Immediate Predecessors Requiring Initial Waits

(j) Mean Initial Wait for Required Immediate Predecessors

(k) Variance of Initial Wait

(1) Mean Initial Special Event Start Time

(m) Variance of Initial Activity Start Time*

(n) Mean Number of Iterations

(o) Variance of Number of Iterations

(2) Per Iteration Data

Note: Each time a box is activated, per simulation program
repetition and per Integration Group, is an iteration.

(a) Rows:

(i) Number of Activations, this Iteration (for All
Simulation Program Repetitions)

(ii) Relative Frequency of Activation, this Iteration
(i.e., Column (i) Value / Actual Number of Simulation
Program Repetitions)

(b) Columns: One per Iteration.

2.7 For Each Subprocess Call*

2.7.1 Inputs Needed*

Same as Outputs Produced items 2.7.2a.(1)(a)-(d), etc.

2.7.2 Output Produced*

a. Subprocess Call Activation Table (One Set per Subprocess Call. One
Instance per Integration Group & Total).

(1) Once per Table Data

(a) Subprocess Call ID

221

(b) Subnetwork Number (0 = None)

(c) Containing Subprocess ID (Blank None)

(d) ID of Called Subprocess

(e) Priority of this Subprocess Call (I = High)

(f) Subprocess Call Input Parameter Vector

Each Element: Input Parameter ID

(g) Subprocess Call Output Parameter Vector

Each Element: Output Parameter ID

(h) Same as Activity Box Results Required Items (1)(e)-(ae)

Note: These results are to be developed as if the called
Subprocess were a single activity.

(2) Per Iteration Data*

Same as Activity Box Per Iteration Data (2.4.2a.(2)).

2.8 For Each Subprocess*

Note: Each component of a subprocess is presumed defined as a basic element
or subprocess call. See paragraphs 2.4.1, 2.5.1, 2.6.1 and 2.7.1.

2.8.1 Inputs Needed*

a. Component Matrix*

(1) Rows: One per Component

(2) Columns: Component ID; Component Type (i.e., Activity Box,
Decision Box, Special Event Box, Subprocess Call).

2.8.2 Output Produced*

Same as Inputs Needed.

222

L

GLOSSARY

Acronyms and Abbreviations

AFLC Air Force Logistics Command

AFSC Air Force Systems Command

ATM Activity Timing and Manpower Data

Box.Proc The label assigned to the Simulator Event Notice
type which processes each Model function box

CCI&C Code, Compile, Integrate & Checkout

CDR Critical Design Review

CI Configuration Item

CPCI Computer Program Configuration Item

CPDP Computer Program Development Plan

CPC Computer Program Component

CPT&E Computer Program Test & Evaluation

CRISP Computer Resources Integrated Support Plan

CSDCA Center for Software Data Collection and Analysis

DELIV Deliver

DEV Develop

DID Data Item Description

DIG Developmental Integration Group

DOC Document

DSGN Designer

ECP Engineering Change Proposal

ESD Electronic Systems Division

FACIL Facility

FCA Functional Configuration Audit

223

GLOSSARY (Continued)

Flow The label assigned to the Simulator Event Notice
type which controls box-to-box transition

FQT Formal Qualification Testing

FSD Full-Scale Development

HiSim High Simulation Level

I&C Integration and Checkout

LoSim Low Simulation Level

MNGT Management

No.Succ Decision Box Successor List (if "No"
Exit is Taken)

ORG Organize

OT) Occurrence and Timing Data

PCA Physical Configuration Audit

PDR Preliminary Design Review

PERT Program Evaluation and Review Technique

PM Program Manager

PMR Program Management Review

PO Program Office

PQT Preliminary Qualification Testing

Pred Function Box Predecessor List

PROC Procedure

PRGH Program

PRGNRS Programers

PROD Produce

PRO Project

224

GLOSSARY (Concluded)

QUAL Qualification

RFP Request for Proposal

SARE Software Acquisition Resource Expenditure

SCEWG Software Cost Estimation Working Group

SEMP System Engineering Management Plan

SPEC Specification

SPRT Support

SYS System

TAC Tactical Air Command

TEMP Test and Evaluation Master Plan

TIG Test Integration Group

TOI Computer Systems Engineering Directorate

Yes.Succ Function Box Successor List (if "Yes" or
Only Exit is Taken)

225

REFERENCES

1. AFR 800-2 Acquisition Program Management, AFR 800-2, 14 November
1977.

2. AFR 800-14 Vol. II Acquisition and Support Procedures for Computer
Resources in Systems, AFR 800-14, Vol. II, 26
September 1975.

3. CLAPJ76 Judith A. Clapp, A Review of Software Cost Estimation
Methods, ESD-TR-76-271, Electronic Systems Division,
AFSC, Hanscom AFB, MA, August 1976, ADA029748.

4. DoDD 5000.29 Management of Computer Resources in Major Defense
Systems, DoDD 5000.29, 26 April 1976.

5. MIL-STD-483 Configuration Management Practices for Systems,
Equipment, Munititions, and Computer Programs, MIL-
STD-483, 31 December 1970.

6. MIL-STD-i521A Technical Reviews and Audits for Systems, Equipment,
and Computer Programs, MIL-STD-1521A, 2 January 1975.

7. SCEWG79 Joseph A. Duquette, AFSC Software Cost Estimation
Working Group (SCEWG) Research Management Plan
(Draft), Directorate of Cost Analysis, Comptroller, Hq
Electronics Systems Division, AFSC, 1 April 1979.

226

